
Exper t systems

� Research in symbolic arti�cial intelligence in 1970's and 1980's to
develop decision support systems

� Expert systems used domain knowledge extracted from a human
expert

� MYCIN diagnosed and planned treatment for blood infections, using
rules:

RULE037

IF the organism
1) stains grampos
2) has coccus shape
3) grows in chains

THEN
There is suggestive evidence (.7) that the
identity of the organism is strep tococcus.

1

Exper t systems

� Sometimes domain information is organized into a tree structure
(dichotomous key)

� Productions of an expert system can often be organized into a
decision tree

� Decision theory — maximize expected utility

2

Decision trees

� Is today a good day to play tennis?

Outlook?

sunny

Humidity?

high

No

normal

Yes

overcast

Yes

rain

Wind?

strong

No

weak

Yes

3

Decision trees

� Decision trees are well suited to represent problems where
instances are vectors of discrete-valued features and the target
function has prede�ned discrete values

� Value of taget function is a `logical' combination of feature values (no
weights, logs, sums, etc.)

� NLP classi�cation problems very often look like this

� If necessary, continuous (interval) variables can be converted to
discrete (ordinal or nominal) variables (discretization)

4

Decision trees

� Decision trees can be constructed manually by a knowledge
engineer

� It's more fun to induce a decision tree from a collection of labeled
instances

� Early work on Divide and conquer algorithms: Hoveland, Hunt
(1950's and 60's)

� Friedman, Breiman ! CART (1984)

� Algorithms ID3 and C4.5 (and others) developed by Ross Quinlan
(1978–now)

5

Algorithm ID3

� Take a set of labeled instances T and a set of features F

� If T is empty, assign the most frequent class

� If all T are in the same class C, assign C

� If F is empty, assign the most frequent class in T

� Otherwise, choose the feature fi which best classi®esT

� For each possible value vj of fi, construct a subtree based on the
instances in T with fi = vj and features F � fi

6

Algorithm ID3

� What makes a feature “good” for classi®cation?

� Remember entropy:

H(X) = � å P(xi) log2P(xi)

� The best feature would divides T into subsets Swith only one class,
with H(Sv) = 0

� More generally, we can measure the discriminative power of a
feature by its information gain:

G(T; f) = H(T) � H(Tj f)

= H(T) � å
v2 f

jSvj
jTj

H(Sv)

7

Algorithm ID3

Day Outlook Temp Humid Wind Play?

d1 sunny hot high weak no
d2 sunny hot high strong no
d3 overcast hot high weak yes
d4 rain mild high weak yes
d5 rain cool normal weak yes
d6 rain cool normal strong no
d7 overcast cool normal strong yes
d8 sunny mild high weak no
d9 sunny cool normal weak yes

d10 rain mild normal weak yes
d11 sunny mild normal strong yes
d12 overcast mild high strong yes
d13 overcast hot normal weak yes
d14 rain mild high strong no

8

Algorithm ID3

� We compute the entropy of the training data:

H(T) = �
9
14

log2
9
14

�
5
14

log2
5
14

= 0:94

� Now for each feature fi, we compute H(Tj fi):

H(Tjhumid) = P(humid=high) H(Tjhumid=high) +

P(humid=norm) H(Tjhumid=norm)

=
7
14

(�
3
7

log2
3
7

�
4
7

log2
4
7

) +
7
14

(�
6
7

log2
6
7

�
1
7

log2
1
7

)

= 0:79

� Branch on outlook, the feature with the lowest conditional entropy
(or highest information gain)

9

Algorithm ID3

� Proceed recursive, with subset of the training data:

Day Outlook Temp Humid Wind Play?

d1 sunny hot high weak no
d2 sunny hot high strong no
d8 sunny mild high weak no
d9 sunny cool normal weak yes
d11 sunny mild normal strong yes

� And:

Day Outlook Temp Humid Wind Play?

d3 overcast hot high weak yes
d7 overcast cool normal strong yes
d12 overcast mild high strong yes
d13 overcast hot normal weak yes

10

Algorithm ID3

� And:

Day Outlook Temp Humid Wind Play?

d4 rain mild high weak yes
d5 rain cool normal weak yes
d6 rain cool normal strong no
d10 rain mild normal weak yes
d14 rain mild high strong no

� Continue until subsets are unequivocal or we are out of features

11

Algorithm ID3

� Result:

Outlook?

sunny

Humidity?

high

No

normal

Yes

overcast

Yes

rain

Wind?

strong

No

weak

Yes

12

Algorithm ID3

� ID3 searches a complete hypothesis space (i.e., every
discrete-valued function can be represented by some decision tree)

� ID3 considers only one hypothesis, and never backtracks

� Search proceeds from shorter trees (with higher infogain features)
over longer trees (with lower infogain features)

� This inductive bias is one interpretation of Occam's Razor:

Pluralitas non est ponenda sine neccesitate.

� But what about pluralitas cum neccesitate?

13

Over�tting

� Even given its bias, ID3 often suffers from over®tting (aka
overtraining) :

Given a hypothesis space H, a hypothesis h 2 H is said to
over�t the training data is there exists some alternative
hypothesis h02 H, such that h has a smaller error than h0over
the training examples, but h0has a smaller error than h over the
entire distribution of instances.

� Over®tting is particular worrisome for models which are not well
speci®ed, or for sparse, noisy, non deterministic data (sound
familiar?)

14

Over�tting

� An example: ten features, which take the value 0 or 1 with equal
probability, and two classes P(yes) = p = 0:75 and
P(no) = 1� p = 0:25

� ID3 produced a tree with 119 nodes and a 35% error rate on test
cases

� Always assigning the most frequent class gives an expected error
rate of 1� p = 0:25

� Assigning yes with probability p yields an error rate of:

p(1� p) + (1� p) p = 2p(1� p) = 0:375

� A stopped clock is right twice a day!

15

Over�tting

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes)

On training data
On test data

16

Over�tting

� One way to control over®tting is to constrain the size of the tree

� Cross validation can be used to ®nd the peak of the learning curve

� We make the stopping criterion more liberal (e.g., stop branching
when 95% of the instances are in one class)

� We also could build a complete tree, and the prune it, replacing a
subtree with a leaf or one of its branches (C4.5)

17

Reduced error pruning

� As we build the tree, we minimize the error w.r.t. the training data

� To avoid over®tting, we want to minimize expected error

� If e out of n training instances covered by a node are misclassi®ed,
the training error is e

n

� To get at the expected error rate, we could pretend that this is a
sample statistic, and try to estimate its sampling distribution

� The upper limit of the con®dence interval for the binomial distribution
UCF(e;n) gives a pessimistic estimate of the expected error rate

� Make a post-order traversal of tree, replacing nodes with a child if
the expected error rate of the child is no more than that of the node

18

Gain ratio

� Another weakness in ID3 comes from its use of information gain,
which strongly prefers features with more values (e.g., day)

� We can normalize information gain by the entropy of the feature
(what Quinlan calls split info):

H(f) = � å
v

2 P(v) log2P(v)

� The gain ratio is the normalized information gain:

GR(T; f) =
G(T; f)
H(f)

� Experimentally, gain ratio seems to be better than information gain
as a measure of the usefulness of a feature to a classi®cation
problem

19

Decision boundaries

20

Decision boundaries ID3

21

Decision boundaries C4.5

22

Decision boundaries

23

Decision boundaries ID3

24

Decision boundaries C4.5

25

Decision boundaries

26

Decision boundaries ID3

27

Decision boundaries C4.5

28

Real world decision trees

� Decision trees are conceptually simple but, with heuristic add-ons,
can be very effective

� Ross Quinlan released a C implementation of C4.5 in the early
1990's

� Both training and application of decision trees is cheap

� This combination has made C4.5 the default machine learning
method

29

