
Probabilistic models

• Decision trees, instance-based learning, and transformation-based
learning are called non-parametric methods because they don’t use
an explicit probabilistic model

• Parametric machine learning methods assume a particular (typically
probabilistic) model

• Parametric methods (usually) search a much more restrictive
hypothesis space than non-parametric methods → large bias, small
variance
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Probabilistic models

• Suppose we have a representation of an instance as feature vector
x and we want to predict its class c

• If we have a way of modeling P(c|x), Bayes Decision Rule says our
predicted ĉ should be:

ĉ = argmax
c∈C

P(c|x)

• This minimizes the expected error:

P(error|x) = 1−P(ĉ|x)

P(error) = ∑
x

P(error|x)P(x)
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Probabilistic models

• There are two ways of applying the Bayes decision rule

• A discriminative (aka diagnostic) method directly models P(c|x)

• More commonly, a generative (aka sampling) method is used, which
models the joint distribution P(x,c) and uses Bayes rule:

ĉ = argmax
c∈C

P(c|x)

= argmax
c∈C

P(x|c)P(c)
P(x)

= argmax
c∈C

P(x|c)P(c)

= argmax
c∈C

P(x,c)
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Probabilistic models

• If Bayes decision rule minimizes error, why do we still make
mistakes?

• Overlapping classification functions (where P(c|x) 6= 1) can never be
learned perfectly

• The classifier only works as well as our model – if our model P(c|x)
is inaccurate, then we’ll make the wrong decisions

• We need some way of constructing, evaluation, and selecting
probability models
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Baseline classifier

• We often compute a ‘baseline’ for a classification task by simply
assigning the most frequent class to each instance:

ĉ = argmax
c∈C

P(c)

• Here we assume that P(c|x) = P(c), i.e., X and C are independent

• The extra error a baseline classifi er makes is:

∑
x

P(x) [P(x,c)−P(x)P(c)]
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Bayes Optimal Classifier s

• Call a particular model h, chosen from the hypothesis space H.

• The maximum likelihood hypothesis selects:

ĉ = argmax
c∈C,h∈H

P(c|x,h)P(d|h)

• The maximum a posteriori hypothesis selects:

ĉ = argmax
c∈C,h∈H

P(c|x,h)P(d|h)P(h)

• Both of these commit us to choosing one h, which may or may not
wind up being the best choice
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Bayes Optimal Classifier s

• The Bayes Optimal Classifier selects:

ĉ = argmax
c∈C

∑
h∈H

P(c|x,h)P(d|h)P(h)

• We remove the dependence on a particular h by averaging over all
possible hs

• This is almost always impossible to apply in practice, but it can used
to establish a lower bound on the error rate

• We can also sometimes approximate it, e.g., by randomly drawing h
from the posterior distribution P(d|h)P(h)
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Naive Bayes classifier s

• To apply a generative Bayesian classifier , we needP(x,c)

• We can break this down into two parts: the class prior P(c), and a
likelihood P(x|c)

• The class priors are easy to estimate from training data:

P̂(c) =
# of instances in class c

# of instances

• This won’t work for P(x|c), since any particular feature vector x is
unlikely to turn up in the training data:

P̂(x|c) =
# of instances of x in c

# of instances in c
≈

0
# of instances of x in c
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Naive Bayes classifier s

• To get a better estimate of P(x|c), we can make the simplifying
assumption that each of the dimensions xi in x are independent, so
that:

P(x|c) = ∏
i

P(xi|c)

• Now we only need to get estimates of P(xi|c) from the data for each
xi, which we can do in the usual way:

P̂(xi|c) =
# of instances of xi in c

# of instances in c

• Both P̂(c) and P̂(xi|c) can be estimated using whatever tricks we
have available
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Naive Bayes classifier s

• The naive Bayes classifier selects the classĉ such that:

ĉ = argmax
c∈C

P(c)∏
i

P(xi|c)

• Naive Bayes classifiers have been used primarily for classifying
texts (Maron 1961)

• We treat a text as a set or bag of words, an unordered collection of
all the words that appear in the text

• “We treat a text as a set or bag of words” ≡ { a, a, as, bag, of, or,
set, text, treat, we, words }

12



Naive Bayes classifier s

• Ignoring word order in the feature representation removes the most
obvious syntactic dependencies between words

P(the)P(book) 6= P(the book)

• There are still semantic dependencies:

P(tackle)P(touchdown) 6= P(tackle, touchdown)

• And, multiple occurrences of words are probably not independent
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Text classification

• Text classification can be useful for information retrieval and natural
language processing tasks

? indexing
? message routing
? summarization

• Text classification also plays a role in linguistic research

? authorship identification
? genre studies
? forensic linguistics
? sociolinguistics

• A combination of the two makes the WWW available as a resource
for research
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Feature selection

• A straight bag-of-words model leads to positing a very large number
of features

• Some of those features will not be relevant for the task (stop words)

• Many of the features will appear relevant, but won’t be: we can’t
avoid the Curse of Dimensionality

• So, we want to select a subset of features which appear promising,
usually by information gain
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Multivariate Bernoulli event model

• If we represent a document as a set of words, then each feature xi is
a Bernoulli variable, where:

P(xi|c j) = P(xi = 1|c j)
xi (1−P(xi = 1|c j))

1−xi

• If there are v words in the vocabulary, a document is constructed by
flipping v coins

• Call pi j = P(xi = 1|c j). Substituting this in, we get:

P(c j|x) =
P(c j)∏i P(xi|c j)

P(x)

=
P(c j)∏i pxi

i j(1− pi j)
1−xi

P(x)
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Multivariate Bernoulli event model

• And taking the log gives us:

logP(c j|x) = logP(c j)+∑
i

xi log pi j +∑
i

(1− xi) log(1− pi j)− logP(x)

= logP(c j)+∑
i

xi log pi j +∑
i

log(1− pi j)−∑xi log(1− pi j)−

logP(x)

= logP(c j)+∑
i

xi log
pi j

1− pi j
+∑

i

log(1− pi j)− logP(x)

• Suppose we only have two classes. Then P(c1|x) = 1−P(c2|x), and
the posterior log odds are:

log
P(c1|x)

1−P(c1|x)
= ∑

i

xi log
pi1(1− pi2)

(1− pi1)pi2
+∑

i

log
1− pi1

1− pi2
+ log

P(c1)

1−P(c1)
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Multivariate Bernoulli event model

• Under this binary independence model, the parameters pi j can be
estimated via:

p̂i j =
# of documents containing xi in c j

# of documents in class c j

• Note that this doesn’t take into account the length of the document

• It also doesn’t take into account the number of times a word appears
in a document
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Multinomial event model

• If instead we represent a document as a bag of words, then we can
model a document as a sequence of random draws from a
multinomial distribution

• The probability of picking word wi if the document class is c j once is
P(wi|c j)

• The probability of picking word wi xi times in a row is P(wi|c j)
xi

• The probability of drawing a collection of words in that order is:

∏
i

P(wi|ci)
xi
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Multinomial event model

• This underestimates P(x|c j), since lots of ordered sequences
correspond to the same bag of words

• How many different ways are there to draw word w1 x1 times, word
w2 x2, and so on?

• We can use the multinomial coefficient :

(

n
n1,n2, . . .

)

=

(

n
n1

)

×

(

n−n1

n2

)

×·· ·

=
n!

n1!(n−n1)!
×

(n−n1)!
n2!(n−n1−n2)!

×·· ·

=
n!

n1!n2! · · ·
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Multinomial event model

• So, if we draw N = ∑i xi words, we have:

P(x|c j) =

(

N
x1,x2, . . .

)

∏P(wi|c j)
xi

= N!∏ P(wi|c j)
xi

xi!

• To be completely correct, we also need to think about the probability
of finding a document of a particular length:

P(x|c j) = P(N|c j)(∑
i

xi)!∏ P(wi|c j)
xi

xi!

but in practice this can be hard to do.
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Multinomial event model

• The parameters of the multinomial model are the individual word
probabilities P(wi|c j)

• Since these are the parameters of a multinomial distribution, we
need to maintain:

∑
i

P(wi|c j) = 1

• We can estimate those from training data as:

P̂(wi|c j) =
# of times wi occurs in documents in c j

# of words in documents in class c j

• As always, smoothing is important
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Text classification

• The multinomial model takes word frequencies and document length
into account, but treats multiple occurrences of a word as
independent events

• McCallum and Nigam (1998) compare the two event models

• Multinominal model almost always outperforms multivariate
Bernoulli model, by 25% or so

• The multinominal model handles large vocabulary sizes much better

• It’s easier to see how to add non-text features and to account for
limited inter-dependencies using a multivariate Bernoulli model
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Naive Bayes classifier s

• Despite its obvious limitations, naive Bayes text classifiers work
quite well

• Lewis and Ringuette 1994 ‘breakeven point’ for naive Bayes very
close to decision trees

• In other work, naive Bayes scores close to, but consistently worse
than, more sophisticated methods

• Since naive Bayes is pretty good, and it’s easy to implement, it is
very widely used
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Naive Bayes classifier s

• Paul Graham wrote an article on naive Bayes classifiers for filter ing
junk mail, which has become a standard method

Free CableTV!No more pay!%RND_SYB

requisite silt administer orphanage teach
hypothalamus diatomic conflict atlas moser
cofactor electret coffin diversionary solicitous
becalm absent satiable blurb mackerel sibilant
tehran delivery germicidal barometer falmouth
capricorn
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Naive Bayes classifier s

• Maron (1961):

It is feasible to have a computing machine read a document
and to decide automatically the subject category to which the
item in question belongs. No real intellectual breakthroughs are
required before a machine will be able to index rather well. Just
as in the case of machine translation of natural language, the
road is gradual but, by and large, straightfoward.
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Zero-one loss

• Given its obvious deficiencies , why does naive Bayes work as well
as it does?

• Its probability estimates are only as good as the independence
assumptions are valid (i.e., not very)

• But, we don’t evaluate a naive Bayes classifier on its probability
estimates

• Instead, we measure its misclassification error, orzero-one loss

• The two measures need not be closely related
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Zero-one loss
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Zero-one loss

• If the features are independent, then naive Bayes is optimal under
zero-one loss

• Domingos and Pazzani (1997) evaluate naive Bayes on problems
from the UCI repository, and fi nd it often performs very well, but
sometimes it performs badly

• They then used mutual information to measure the pairwise
dependencies between features

• There was no clear relationship between the validity of
independence assumptions and the performance of naive Bayes
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Zero-one loss

• Suppose there are two classes, and let p = P(c1|x),
r = P(c1) ∏i P(xi|c1) and s = r = P(c2) ∏i P(xi|c2)

• For any instance x, naive Bayes is optimal under zero-one loss if
and only (p ≥ 1

2 ∧ r ≥ s)∨ (p ≤ 1
2 ∧ r ≤ s)

• That means that naive Bayes is optimal under zero-one loss for half
the volume of the space of possible values of (p,r,s)!

• The naive Bayes probabilities are optimal only along the line where
the planes r = p and s = 1− p intersect

30

Zero-one loss

• A necessary condition: naive Bayes can only be optimal (for discrete
features) for concepts that are linearly separable

• For discrete features, combinations of variables by ∧, ∨, and ¬ are
linearly separable

• This isn’t a sufficient condition, since there are linearly separable
concepts which naive Bayes performs poorly on (m-of-n concepts)

• Naive Bayes is optimal for conjunctions of features and for
disjunctions of features

• This points to one way to improve naive Bayes: introduce new
features which are disjunctions (or conjunctions) of other features
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Zero-one loss

• Even when naive Bayes is not optimal, it may outperform other
methods with greater representational power (e.g., C4.5)

• Zero-one loss is relatively insensitive to bias, but can be highly
sensitive to variance

• When there isn’t enough training data, a high bias, low variance
learner will give a lower zero-one loss than a low bias, high variance
learner

• We’ve seen this before: a simple model can outperform a more
complex one, even when the assumptions of the simple model are
false
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