
Probabilistic classifier s

• Bayes Decision Rule minimizes expected error:

ĉ = argmax
c∈C

P (c|x)

• We use a generative model P (x, c) plus Bayes’ Theorem:

ĉ = argmax
c∈C

P (c|x)

= argmax
c∈C

P (x|c) P (c)

P (x)

= argmax
c∈C

P (x|c) P (c)

= argmax
c∈C

P (x, c)
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Naive Bayes classifier s

• We can split P (x, c) into two parts: the class prior P (c), and a
likelihood P (x|c)

• It’s easy to get reasonable estimates of P (c) from training data, but
not P (x|c)

• Instead, we assume that the individual features in x are
independent, so:

P (x|c) =
∏

i

P (xi|c)

• Now the decision rule becomes:

ĉ = argmax
c∈C

P (c)
∏

i

P (xi|c)
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Naive Bayes classifier s

• Naive Bayes classifiers work well even when features aren’t
independent

• But, the “naive Bayes” assumption is clearly wrong – can we do
without it?

• If we know all the P (xi|c)’s but not their dependencies, is it possible
to construct P (x|c)?

• Yes, in fact, there are lots of ways to do it: the problem is ill-posed
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Maximum Entropy

• This is a general problem: how do we pick a probability distribution
given possibly incomplete information?

• Our probability estimates should reflect what we know and what we
don’t know : ignorance is preferable to error

• Shannon’s entropy is a measure of ignorance

• Jaynes (1957): “The least informative probability distribution
maximizes the entropy S subject to known constraints.”
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Principle of Insufficient Reason

• Remember Bernoulli’s Principle of Insufficient Reason: if we have n

outcomes and don’t know anything else, then say each outcome has
a probability of 1

n

• Suppose we have a coin (with two sides). All we know is:

P (h) + P (t) = 1

• The entropy H is:

H = −(P (h) log P (h) + P (t) log P (t))

= −(P (h) log P (h) + (1 − P (h)) log(1 − P (h)))

• If P (h) = 0.5, then H = log
2
1 = 1 bit
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Principle of Insufficient Reason
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Wallis derivation

• Why maximize entropy? Shannon and Jaynes show that other
measures run into inconsistencies.

• Another argument (what Jaynes calls the “Wallis derivation”) based
on a procedure for ‘fairly’ constructing a distribution given some
constraints

• Divide the available probability mass into n quanta, each of
magnitude δ = 1

n
, and randomly assign them to the m possible

outcomes.

• If outcome i gets ni quanta, then we say its probability is
pi = ni δ = ni

n

• If the resulting distribution fits the known constraints, we’re done.
Otherwise, we reject it and try again.
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Wallis derivation

• For this to give good results, n has to be much larger than m, and
we might need a lot of attempts before we get a distribution that fits
the constraints

• So, instead, let’s find the distribution which is most likely to come up

• The probability of any particular assignment is given by the
multinomial distribution:

P (n1, . . . , nm) =

(

n

n1, . . . , nm

)

m−n =
n!

n1! · · ·nm!
m−n

• So, the assignment which we are most likely to come up with using
this fair procedure is the one that maximizes:

W =
n!

n1! · · ·nm!

8



Wallis derivation

• Instead of maximizing W , we could equivalently maximize a
monotonic increasing function of W , like, oh, say, 1

n
log W :

1

n
log W =

1

n
log

n!

n1! · · ·nm!

=
1

n
log

n!

np1! · · ·npm!

=
1

n
(log n! −

∑

i

log npi!)
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Wallis derivation

• Now, we can bring in Stirling’s approximation:

log n! =

n
∑

k=1

log k

≈

∫ n

1

log x dx

= n log n − n + 1

≈ n log n − n
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Wallis derivation

• Put them together and we get:

1

n
log W =

1

n
(n log n − n −

∑

i

(npi log npi − npi)

= log n −
∑

i

pi log npi

= log n − (
∑

i

pi log n +
∑

i

pi log pi)

= log n − (
∑

i

pi log n +
∑

i

pi log pi)

= (1 −
∑

i

pi) log n −
∑

i

pi log pi

= −
∑

i

pi log pi
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A simple example

• Suppose a fast-food restaurant sells $1.00 burgers and $2.00
chicken sandwiches. Customers, on average, pay $1.75 for lunch.
What’s the probability that someone ordered a burger?

• We know:

P (b) + P (c) = 1

($1.00 × P (b)) + ($2.00 × P (c)) = $1.75

• So, we can conclude:

($1.00 × P (b)) + ($2.00 × (1 − P (b))) = $1.75

P (b) = $0.25
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A simple example

• Now suppose this fast-food restaurant also sells $3.00 fish
sandwiches. If customers pay $1.75 for lunch on average, what’s the
probability that someone ordered a burger?

• We know:

P (b) + P (c) + P (f) = 1

($1.00 × P (b)) + ($2.00 × P (c)) + ($3.00 × P (f)) = $1.75

• Now we have three unknown probabilities and only two constraints.

• Out of the many possible ways of assigning probabilities, we want to
find the one that maximizes the entropy.
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A simple example

• We can use the constraints to eliminate two of the unknowns:

P (c) = −2 P (b) + 1.25

P (f) = P (b) − 0.25

• Now we can apply MaxEnt:

H = −P (b) log P (b) −

(−2 P (b) + 1.25) log(−2 P (b) + 1.25) −

(P (b) − 0.25) log(P (b) − 0.25)
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A simple example
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A simple example

• To find the value ofP (b) which maximizes H, we take the derivative
of H:

d

dP (b)
H = − log(P (b)) + 2 log(−2P (b) + 1.25) − log(P (b) − 0.25)

and solve:

− log(P (b)) + 2 log(−2P (b) + 1.25) − log(P (b) − 0.25) = 0

P (b) = 0.466
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Maximum entropy

• Simple problems can be solved analytically, but to replace naive
Bayes we need a more general solution

• We have our usual feature vector x, and we know the value of
feature xi for every instance in the training set

• From this, we can estimate the expected value Ê[xi]

• This gives us a set of constraints:

∑

P (x) = 1

for each xi:
∑

P (x) xi = Ê[xi]

• Of the distrubutions which satisfy these constraints, we need to find
the one that maximizes the entropy H(P )
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Constrained optimization

• This is a constrained optimization problem: maximize a function
given a set of constraints

• First, we restate the constraints:

0 =
∑

P (x) xi − Ê[xi]

0 =
∑

P (x) − 1

• Next, we introduce the Lagrangian function:

L(P, λ, γ) = −
∑

x

P (x) log P (x) −
∑

i

λi

(

∑

x

P (x) xi − Ê[xi]

)

−

γ

(

∑

x

P (x) − 1

)
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Constrained optimization

• This now gives us an unconstrained optimization problem, which we
can solve by finding theP where:

∇L(P, λ, γ) = 0

• So, we start here:

0 =
∂

∂P
L(P, λ, γ)

= −(1 + log P (x)) −
∑

i

λixi − γ

log P (x) = −γ − 1 −
∑

i

λixi

P (x) = exp (γ − 1) exp

(

∑

i

λixi

)
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Constrained optimization

• Recall that:

∑

x

P (x) = 1

=
∑

x

exp (γ − 1) exp

(

∑

i

λixi(x)

)

exp (γ − 1) =

(

∑

x

exp

(

∑

i

λixi

))−1
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Constrained optimization

• Finally, substituting in P (x), we get:

P (x) =
1

Z
exp

(

∑

i

λixi

)

Z =
∑

x

exp

(

∑

i

λixi

)

• Parameters λi are chosen so that:

∑

x

P (x)xi = Ê[xi]

• Z is sometimes called the partition function
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MaxEnt classifier s

• The model can be constrained by anything whose expected value is
interesting (e.g, presence of a word, normalized frequency of a
word)

• To apply this to classification, we need the joint distributionP (x, c).
So, features need to be a conjunction of a contextual predicate and
a class

• We can account for the class prior P (c) by including the class itself
as a feature

• Feature selection can be done in the usual way.

• Setting all features for a baseline class to zero will further reduce the
number of features
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MaxEnt classifier s

• To build a MaxEnt classifier , we need to construct a functionfi from
documents to features, and then estimate λi for each feature i (more
on that later)

• Then, to find the probability of a new documentd having a class
label c, we evaluate:

P (d, c) =
exp

∑

i λifi(d, c)
∑

d,c exp
∑

i λifi(d, c)

• Now we have a problem: the sum in the denominator ranges over all
possible documents and classes

• One option is Monte Carlo simulation: randomly generate lots of
documents according to our distribution and use them to estimate Z
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MaxEnt classifier s

• Instead, we can use our training data to compute an ‘empirical’
document distribution P̃ (d).

• Instead of these constraints:
∑

d

P (d, c) fi(d, c) =
∑

d

P̃ (d, c) fi(d, c)

we can use these constraints:
∑

d

P̃ (d) P (c|d) fi(d, c) =
∑

d

P̃ (d, c) fi(d, c)

• This gives us a conditional maximum entropy model:

P (c|d) =
exp

∑

i λifi(d, c)
∑

c exp
∑

i λifi(d, c)
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MaxEnt classifier s

• If we are only interested in classification, then for each document we
only need to find:

ĉ = argmax
c∈C

∑

i

λifi(d, c)

• This (obviously) gives us a linear decision boundary

• Since we’re not summing log probabilities, there’s no clear bias for
longer or shorter documents

• Also known as log-linear, Gibbs, exponential, and multinomial logit
models

• Other constraints yield different distributions
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