Homework

Read section 16.2 (Check errata on web page!)

Do exercise 16.7, 16.8, and 16.9

Naive Bayes

Bayes Decision Rule minimizes expected error:

(@
I

argmax p(c|x)
ceC

= argmax p(x, c)
ceC

We can split p(z, ¢) into two parts: the class prior p(c), and p(x|c),

where:
plele) = [[p(zilo

Or, we can try other ways to get from p(x;|c) to p(z|c)

Maximum Entropy

We often need to build probability models without having access to
all the required information

In general, our probability estimates should reflect what we know
and what we don’t know: ignorance is preferable to error

Shannon'’s entropy is a measure of ignorance

Jaynes (1957). “The least informative probability distribution
maximizes the entropy S subject to known constraints.”

Wallis derivation

Maximum entropy

A bit of terminology: let's say p(x,w) is the ‘real’ probability of event
x in context w, and our predicted probability is ¢(z, w)

We suppose we can get reasonable estimates of E,,|f;| for each
feature f; from our training data

These are our constraints:

Ep[fi] — Eq[fi]
S b w) filzw) =Y qle,w) filz, w)

T,w

Maximum entropy

We used the method of Lagrange multipliers to derive a general
solution for the distribution which satisfies these constraints (what
we know) while maximizing the entropy (what we don’t know)

The parametric form of the distribution is:

Ny exp) ; Ai fi(x)
2@ 4) = Zx exXp Zz Ai fi(x)

But, evaluating the partition function requires summing over all
possible configurations, which is often impractical or impossible

Maximum entropy

One way to avoid this problem is to limit ourselves to just those
configurations which actually occur in the training data

We use these constraints instead:

Eplfil Eqlfi)
Zp(x,w)fi(x,w) = Zp q(z|w) fi(z,w)

This gives us the conditional maximum entropy model:

exXp Zz >‘sz (5137 w)
Zx exXp Zz)‘zfz(za w)

q(z|w; \) =

Parameter estimation

Given this general form for the distribution, we still need to find A for
any given set of training data

The form of the distribution maximizes the entropy

What's left to do is satisfy the constraints: we need to select values
for A which accurately predict our feature expectations

Parameter estimation

That means, we want to minimize the KL divergence:

D(pllg) = > p(z,w)log HE0)

q(x,w; \)

T, W

= > p(z,w) (log p(z|w) — log q(x|w; X))

T, W

— Zp(x,w) logp(a:\w) — ZP(ZII,’LU) log C](Qf|w;)\)

T, w

Parameter estimation

Or, in other words, we want to maximize the log-likelihood:

L) =) plz,w)logq(zw;\)

. exXp Zz Aifi(z, w)
= 2 plw)los s)

= Zp(a:,w) Z)\Zfz(x,w) — ZP(%U}) 1OgZeXPZ>\z‘fi(zaw)

Parameter estimation

So, we we need to find the gradient of the log likelihood
G(\) = VL()\) and find a stationary point.

Some reminders:

Lli@g@) = @)@+ o) @)
d . 1,
%[logf(a:)_ = mf(x)

Llexp f2)] = f(@) exp f(x)

10

Parameter estimation

So, for the gradient we get:

B = Lpwufie) -

eXka)\kfk(sz) (5w
R SH= SR AT

=) pla,w)fi(z,w) S‘ (Yp 2, w) > a(z|w; A) fi(z, w)

Ir,w

= Lr(@w)fiew) =3 pwlalhu)il w
— p[fz’]_ q[fi]

which should be reassuring

11

Parameter estimation

The log-likelihood function L is convex
That means that its value is maximized at A* where G(*) = 0.

The partial derivative of L(\) for any \; depends on all the other \’s,
so there is no closed form solution

Instead we proceed iteratively.

12

Parameter estimation

ESTIMATE(p)

1
2
3
4
5
6
4
8
9

AV — 0

k0

repeat
compute ¢(*) from A(F)
compute update ¢¥)
AEFL) AR) L 5(k)
R |

until converged
return \(%)

13

lterative scaling

Generalized Iterative Scaling (Darroch and Ratcliff 1972).

5% = log (EEZ; E{%)

Descended from Iterative Proportional Fitting (Deming and Stephan
1940)

Learning rate C' is the maximum sum of the values of all the
features:

C = mafoi(a;,w)

Easy to compute, doesn’t require evaluating gradient, or even
probabilities

14

lterative scaling

Improved Iterative Scaling (Della Pietra, Della Pietra, Lafferty 1997)
relaxes requirement for constant C

Perform iterative scaling in each dimension in parallel, to find 5§k)
such that:

Elfi] =Y ple, w)g™ (z|w) fi(z, w) exp(C(z, w)o ™)

T, w

This one-dimensional optimization problem can itself be solved
iteratively

Improved Iterative Scaling also only requires computation of
expectations.

But, for this problem, iterative scaling updates are as expensive to
compute as the gradient.

15

First order methods

The simplest first-order method follows the gradient to find the
direction of steepest ascent, with the step size a(*) selected by line
search:

k) — Oz(’f)g@(’f))

Steepest ascent is locally optimal, in a narrow sense

Steepest ascent considers the same search directions repeatedly,
leading to slow convergence.

16

First order methods

17

First order methods

Conjugate gradient methods such as the Fletcher-Reeves or
Polak-Ribiére algorithms avoid this.

Search direction p is a function of the previous search direction and
the steepest ascent direction:

w _ GAETGOW)
B N G()\(k—l))TG()\(k—l))

p(k) — G()\(k))_|_ﬁ(k)p(k—1)

As with steepest ascent, optimal step size is found by a line search:

5 = (k)(R)

18

Second order methods

We can improve on first-order methods by taking the second
derivative into account

If we locally model our log likelihood as a quadratic function, then
the Taylor series approximation gives us:

L+ 8) ~ L(A) + 67G(\) + %5TH(A)5

We want to find the 6 which maximizes this, so:

04+ G\ +6"H(N) = 0
STH(N) = —G(\)
P — _w

19

Second order methods

This yields Newton’s method:

5k) — _H—l()\(k))(;()\(k))

This update rule provides both a direction and a step size, so a line
search is generally unnecessary

Under certain conditions, (%) will not be an ascent direction, so to
guarantee convergence a line search is sometimes required

Newton’s method converges quickly (in one step, for a quadratic
objective function)

20

Second order methods

21

Second order methods

Our log likelihood is twice differentiable, with the Hessian matrix:
HZO‘) — Eq/\[fifj] _ EQA[fi]EQA[fj]
(This is the variance-covariance matrix for f.)

A variant of this (Fisher scoring) is used to fit log-linear models for
statistical analysis

For models with lots of parameters, H Is too expensive to compute
and invert on each iteration

22

Second order methods

As we get close to a solution, we will be computing the gradient G at
lots of closely space points

We can use these gradients to estimate H (analogous to finite
differencing)

Quasi-Newton methods replace inverse Hessian with:
5 = BRI G(AR)

where B(¥) is a symmetric, positive definite matrix which satisfies

the equation:
By (k) — 5(k—1)

with
yF) = g(AF)) — (A1)

23

Second order methods

Quasi-Newton methods update an approximation of Z—! on each
iteration, saving the cost of recomputing it

But, we still need to store B: for 100,000 features, this would require
more than 74gb!

Limited memory variable metric methods store B(*) in a compact
form, using the previous m values of y*) and §(*).

In practice, m < 5 works well, converging almost as fast as Newton’s
method with much more modest computational requirements

24

Second order methods

25

Evaluation

Reduces parameter estimation to well-known problems (non-linear
optimization, sparse matrix-vector products).

PETSc and TAO (part of DoE’s ACTS Toolkit) provide the basis for
efficient, highly scalable parameter estimation software, optimized
for workstations, clusters, and parallel supercomputers.

Data sets used for evaluation:

dataset classes contexts features Nnon-zeros
rules 29,602 2,525 246 732,384
lex 42,509 2547 135,182 3,930,406

summary 24,044 12,022 198,467 396,626
shallow 8,625,782 375,034 264,142 55,192,723

26

0 40000 60000 80000
0 50 100 150

20000

0

Time

40 60 80 100 120
0 5 10 15 20 25 30

20

Evaluation

- summary
S
3

ascent cg(fr) cg(pr is iis Imvm ascent cg(fr) cg(pr S iis Imvm

ascent cg(fr) cg(prp) [iis Imvm ascent cg(fr) cg(prp) o[iis Imvm

Evals

Evaluation
summary

15000

0 5000 10000
0 1000 2000 3000

ascent cg(fr) cg(pr is iis Imvm ascent cg(fr) cg(pr S iis Imvm

1200

500 1000 1500
200 400 600 800 1000

ascent cg(fr) cg(prp) [iis Imvm ascent cg(fr) cg(prp) o[iis Imvm

Acc

Evaluation

1 100

100 A L
80 L
60 - L
40 1

20

S Imvm

ascent cg(fr) cg(prp) gis iis Imvm ascent cg(fr) cg(prp) gis ii

Convergence

_
G200

_
0200

_
9900

AN A

_
090°0

_
GS0°0

0500

1000

500

100

50

10

Iteration

30

Results

Advantages of IIS over GIS are slim.

CG and LMVM show similar convergence properties, but LMVM
tends to take less time per iteration.

Both methods converge substantially faster than iterative scaling.

Some algorithms are more robust than others to problems with the
training data.

High-quality numerical libraries offer many advantages for NLP

Software available: estimate and classify

31

Smoothing

As described, this is will find the maximum likelihood estimate, and
runs into all the usual problems

In fact, it's worse, since MaxEnt models can’t represent probabilities
of 0 or 1 with finite feature values

Smoothing is just as important with MaxEnt models as any other
probabilistic models

All the usual smoothing methods can be applied in computing the
empirical expectation E,,| f;]

32

Gaussian prior

Another option is to use MAP estimation:

A" = argmax q(z|w; A) p(\)
A

The parameter prior p(\) is the probability of a particular parameter
vector independent from the training data

MLE implicitly assumes a uniform prior over parameters

A Gaussian prior with © = 0 will tend to prefer uniform models

33

Gaussian prior

If L(\) is the log likelihood we use for ML estimation, we can
construct a penalized likelihood:

V2ro? 202

= L) -) Mo

202

L'\ = L(A)Jr; ! exp(—AZ)

)

And the gradient G’ is:

34

