
Homework

• Read section 16.2 (Check errata on web page!)

• Do exercise 16.7, 16.8, and 16.9

1

Naive Bayes

• Bayes Decision Rule minimizes expected error:

ĉ = argmax
c∈C

p(c|x)

= argmax
c∈C

p(x, c)

• We can split p(x, c) into two parts: the class prior p(c), and p(x|c),
where:

p(x|c) =
∏

i

p(xi|c)

• Or, we can try other ways to get from p(xi|c) to p(x|c)

2

Maximum Entropy

• We often need to build probability models without having access to
all the required information

• In general, our probability estimates should reflect what we know
and what we don’t know : ignorance is preferable to error

• Shannon’s entropy is a measure of ignorance

• Jaynes (1957): “The least informative probability distribution
maximizes the entropy S subject to known constraints.”

• Wallis derivation

3

Maximum entropy

• A bit of terminology: let’s say p(x,w) is the ‘real’ probability of event
x in context w, and our predicted probability is q(x, w)

• We suppose we can get reasonable estimates of Ep[fi] for each
feature fi from our training data

• These are our constraints:

Ep[fi] = Eq[fi]∑
x,w

p(x,w) fi(x,w) =
∑
x,w

q(x,w) fi(x, w)

4

Maximum entropy

• We used the method of Lagrange multipliers to derive a general
solution for the distribution which satisfies these constraints (what
we know) while maximizing the entropy (what we don’t know)

• The parametric form of the distribution is:

q(x;λ) =
exp

∑
i λi fi(x)∑

x exp
∑

i λi fi(x)

• But, evaluating the partition function requires summing over all
possible configurations, which is often impractical or impossible

5

Maximum entropy

• One way to avoid this problem is to limit ourselves to just those
configurations which actually occur in the training data

• We use these constraints instead:

Ep[fi] = Eq[fi]∑
x,w

p(x, w) fi(x,w) =
∑
x,w

p(w) q(x|w) fi(x,w)

• This gives us the conditional maximum entropy model:

q(x|w;λ) =
exp

∑
i λifi(x,w)∑

x exp
∑

i λifi(x,w)

6

Parameter estimation

• Given this general form for the distribution, we still need to find λ for
any given set of training data

• The form of the distribution maximizes the entropy

• What’s left to do is satisfy the constraints: we need to select values
for λ which accurately predict our feature expectations

7

Parameter estimation

• That means, we want to minimize the KL divergence:

D(p||q) =
∑
x,w

p(x,w) log
p(x, w)

q(x,w;λ)

=
∑
x,w

p(x,w) log
p(w) p(x|w)

p(w) q(x|w;λ)

=
∑
x,w

p(x,w) log
p(x|w)

q(x|w;λ)

=
∑
x,w

p(x,w) (log p(x|w)− log q(x|w;λ))

=
∑
x,w

p(x,w) log p(x|w)−
∑
x,w

p(x,w) log q(x|w;λ)

8

Parameter estimation

• Or, in other words, we want to maximize the log-likelihood:

L(λ) =
∑
x,w

p(x,w) log q(x|w;λ)

=
∑
x,w

p(x,w) log
exp

∑
i λifi(x,w)∑

z exp
∑

i λifi(z, w)

=
∑
x,w

p(x,w)
∑

i

λifi(x, w)−
∑
x,w

p(x,w) log
∑

z

exp
∑

i

λifi(z, w)

9

Parameter estimation

• So, we we need to find the gradient of the log likelihood
G(λ) = ∇L(λ) and find a stationary point.

• Some reminders:

d

dx
[f(x) g(x)] = f(x) g′(x) + g(x) f ′(x)

d

dx
[log f(x)] =

1
f(x)

f ′(x)

d

dx
[exp f(x)] = f ′(x) exp f(x)

10

Parameter estimation

• So, for the gradient we get:

∂L(λ)
∂λi

=
∑
x,w

p(x,w)fi(x,w)−

∑
x,w

p(x,w)
∑

z

exp
∑

k λkfk(z, w)∑
y exp

∑
k λkfk(y, w)

fi(z, w)

=
∑
x,w

p(x,w)fi(x,w)−
∑
w

(∑
x

p(x,w)

)∑
z

q(z|w;λ)fi(z, w)

=
∑
x,w

p(x,w)fi(x,w)−
∑
w,z

p(w)q(z|w;λ)fi(z, w)

= Ep[fi]− Eq[fi]

which should be reassuring

11

Parameter estimation

• The log-likelihood function L is convex

• That means that its value is maximized at λ∗ where G(λ∗) = 0.

• The partial derivative of L(λ) for any λi depends on all the other λ’s,
so there is no closed form solution

• Instead we proceed iteratively.

12

Parameter estimation

ESTIMATE(p)
1 λ0 ← 0
2 k ← 0
3 repeat
4 compute q(k) from λ(k)

5 compute update δ(k)

6 λ(k+1) ← λ(k) + δ(k)

7 k ← k + 1
8 until converged
9 return λ(k)

13

Iterative scaling

• Generalized Iterative Scaling (Darroch and Ratcliff 1972):

δ(k) = log

(
Ep[f]

Eq(k)[f]

) 1
C

• Descended from Iterative Proportional Fitting (Deming and Stephan
1940)

• Learning rate C is the maximum sum of the values of all the
features:

C = max
x,w

∑
i

fi(x,w)

• Easy to compute, doesn’t require evaluating gradient, or even
probabilities

14

Iterative scaling

• Improved Iterative Scaling (Della Pietra, Della Pietra, Lafferty 1997)
relaxes requirement for constant C

• Perform iterative scaling in each dimension in parallel, to find δ
(k)
i

such that:

Ep[fi] =
∑
x,w

p(x, w)q(k)(x|w)fi(x, w) exp(C(x, w)δ(k)
i)

• This one-dimensional optimization problem can itself be solved
iteratively

• Improved Iterative Scaling also only requires computation of
expectations.

• But, for this problem, iterative scaling updates are as expensive to
compute as the gradient.

15

First order methods

• The simplest first-order method follows the gradient to find the
direction of steepest ascent, with the step size α(k) selected by line
search:

δ(k) = α(k)G(λ(k))

• Steepest ascent is locally optimal, in a narrow sense

• Steepest ascent considers the same search directions repeatedly,
leading to slow convergence.

16

First order methods

17

First order methods

• Conjugate gradient methods such as the Fletcher-Reeves or
Polak-Ribière algorithms avoid this.

• Search direction p is a function of the previous search direction and
the steepest ascent direction:

β(k) =
G(λ(k))TG(λ(k))

G(λ(k−1))TG(λ(k−1))

p(k) = G(λ(k)) + β(k)p(k−1)

• As with steepest ascent, optimal step size is found by a line search:

δ(k) = α(k)p(k)

18

Second order methods

• We can improve on first-order methods by taking the second
derivative into account

• If we locally model our log likelihood as a quadratic function, then
the Taylor series approximation gives us:

L(λ + δ) ≈ L(λ) + δTG(λ) +
1
2
δTH(λ)δ

• We want to find the δ which maximizes this, so:

0 + G(λ) + δTH(λ) = 0

δTH(λ) = −G(λ)

δT = −G(λ)
H(λ)

19

Second order methods

• This yields Newton’s method :

δ(k) = −H−1(λ(k))G(λ(k))

• This update rule provides both a direction and a step size, so a line
search is generally unnecessary

• Under certain conditions, δ(k) will not be an ascent direction, so to
guarantee convergence a line search is sometimes required

• Newton’s method converges quickly (in one step, for a quadratic
objective function)

20

Second order methods

21

Second order methods

• Our log likelihood is twice differentiable, with the Hessian matrix:

Hij(λ) = Eqλ
[fifj]− Eqλ

[fi]Eqλ
[fj]

(This is the variance-covariance matrix for f .)

• A variant of this (Fisher scoring) is used to fit log-linear models for
statistical analysis

• For models with lots of parameters, H is too expensive to compute
and invert on each iteration

22

Second order methods

• As we get close to a solution, we will be computing the gradient G at
lots of closely space points

• We can use these gradients to estimate H (analogous to finite
differencing)

• Quasi-Newton methods replace inverse Hessian with:

δ(k) = B(k)G(λ(k))

where B(k) is a symmetric, positive definite matrix which satisfies
the equation:

B(k)y(k) = δ(k−1)

with
y(k) = G(λ(k))−G(λ(k−1))

23

Second order methods

• Quasi-Newton methods update an approximation of H−1 on each
iteration, saving the cost of recomputing it

• But, we still need to store B: for 100,000 features, this would require
more than 74gb!

• Limited memory variable metric methods store B(k) in a compact
form, using the previous m values of y(k) and δ(k).

• In practice, m ≤ 5 works well, converging almost as fast as Newton’s
method with much more modest computational requirements

24

Second order methods

25

Evaluation

• Reduces parameter estimation to well-known problems (non-linear
optimization, sparse matrix-vector products).

• PETSc and TAO (part of DoE’s ACTS Toolkit) provide the basis for
efficient, highly scalable parameter estimation software, optimized
for workstations, clusters, and parallel supercomputers.

• Data sets used for evaluation:

dataset classes contexts features non-zeros

rules 29,602 2,525 246 732,384
lex 42,509 2,547 135,182 3,930,406
summary 24,044 12,022 198,467 396,626
shallow 8,625,782 375,034 264,142 55,192,723

26

Evaluation

T
im

e

ascent cg(fr) cg(prp) gis iis lmvm

20
40

60
80

10
0

12
0 lex

ascent cg(fr) cg(prp) gis iis lmvm

0
5

10
15

20
25

30

rules
ascent cg(fr) cg(prp) gis iis lmvm

0
20

00
0

40
00

0
60

00
0

80
00

0

shallow

ascent cg(fr) cg(prp) gis iis lmvm

0
50

10
0

15
0

20
0 summary

27

Evaluation

E
va

ls

ascent cg(fr) cg(prp) gis iis lmvm

50
0

10
00

15
00

lex

ascent cg(fr) cg(prp) gis iis lmvm

20
0

40
0

60
0

80
0

10
00

12
00

rules
ascent cg(fr) cg(prp) gis iis lmvm

0
50

00
10

00
0

15
00

0 shallow

ascent cg(fr) cg(prp) gis iis lmvm

0
10

00
20

00
30

00

summary

28

Evaluation

A
cc

0

20

40

60

80

100

ascent cg(fr) cg(prp) gis iis lmvm

lex

ascent cg(fr) cg(prp) gis iis lmvm

rules

shallow

0

20

40

60

80

100

summary

29

Convergence

1 5 10 50 100 500 1000

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0
0.

07
5

Iteration

K
L

D
iv

30

Results

• Advantages of IIS over GIS are slim.

• CG and LMVM show similar convergence properties, but LMVM
tends to take less time per iteration.

• Both methods converge substantially faster than iterative scaling.

• Some algorithms are more robust than others to problems with the
training data.

• High-quality numerical libraries offer many advantages for NLP

• Software available: estimate and classify

31

Smoothing

• As described, this is will find the maximum likelihood estimate, and
runs into all the usual problems

• In fact, it’s worse, since MaxEnt models can’t represent probabilities
of 0 or 1 with finite feature values

• Smoothing is just as important with MaxEnt models as any other
probabilistic models

• All the usual smoothing methods can be applied in computing the
empirical expectation Ep[fi]

32

Gaussian prior

• Another option is to use MAP estimation:

λ∗ = argmax
λ

q(x|w;λ) p(λ)

• The parameter prior p(λ) is the probability of a particular parameter
vector independent from the training data

• MLE implicitly assumes a uniform prior over parameters

• A Gaussian prior with µ = 0 will tend to prefer uniform models

33

Gaussian prior

• If L(λ) is the log likelihood we use for ML estimation, we can
construct a penalized likelihood:

L′(λ) = L(λ) +
∑

i

1√
2πσ2

exp
(
−λi

2σ2

)

= L(λ)−
∑

i

λ2
i

2σ2
+ C

• And the gradient G′ is:

G′(λ) = G(λ)−
∑

i

λi

σ2
i

34

