Committee machines

Committe machines (or ensemble machines) combine the
predictions of more than one classifier

Committee machines depend on the members being reasonably
accurate (better than guessing) and diverse (errors are
uncorrelated)

Majority vote and weighted majority are simple ensemble methods

Committee machines reduce statistical error, computational error,
and representational error

Generating diversity

Given training data and a learning method, how to we generate a
diverse committee of classifiers?

We can inject randomness into the learning procedure by varying
Initial conditions or hyperparameters

Bagging (bootstrap aggregation): randomly generate lots (25—200)
of training sets by sampling the original training data with
replacement majority vote

Reduces variance, so most effective for high variance, low bias
classifiers

Generating diversity

Another strategy is to select disjoint subsets of features

Reduces dimensionality for each classifier (important for classifiers
like neural nets)

Each resulting classifier must still be fairly accurate, so only works if
features can be broken down into independent subsets

Volcano identification (Cherkauer 1996) — 32 neural nets using 8
subsets of 119 features x 4 network sizes

Not especially useful for NLP (but: cotraining)

Generating diversity

We can also generate multiple classifiers by manipulating their
target functions

Error-correcting output codes are redundant encodings which allow
reliable data transmission in the presence of noise

Classifications are a kind of data transmission, and classification
errors are a kind of noise

We can use error-correcting strategies to reduce classification error
(Dietterich and Bakari 1995)

Error-correcting output coding

Suppose we have a four-class problem. We could construct a binary
classifier for each class (one-per-class method):

c1 1000
co 0100
cs 0010
cy 0001

This can, of course, be reduced (distrubuted coding):

C1 0]0]
C9o 10
C3 01

Cq 11

Error-correcting output coding

We can also produce a redudant code, using 10 binary classifiers:

ci 1010011100
co 0100011101
cs 1001100011
cy 1011111010

If the bitstring produced by a test example doesn’t match one of
these codes exactly, choose the one with the fewest number of
different bits (Hamming distance)

For example, if our 10 binary classifiers produced the bitstring:

1010011101

we would predict class ¢4

Error-correcting output coding

If the minimum Hamming distance between any two classes is d,
then the encoding can correct at least | 45| single-bit errors

In the one-per-class case d = 2, and for the minimal encoding d = 1
(no error correction!)

In the redundant code d = 4, so we can survive at least one error
and still get the answer right

To apply ECOC classification, we need to produce a suitable
encoding

Error-correcting output coding

Row separation increases the minimum Hamming distance between
codes, and so increases the number of errors which can be
corrected

Column separation increases the independence of the individual
classifiers, reducing the probability of simultaneous errors

Exhaustive code for k classes uses 2—! — 1 bits
First class gets a code of all 1's

The ith class gets alternating runs of 2*—¢ zeros and ones

Error-correcting output coding

Exhaustive code for five classes:

ci 111111111111111
co 000000001111111
c3 000011110000111
cy 001100110011001
cs 010101010101010

Minimum Hamming distance is 8, and no two columns are identical
or complementary

Only really practical for 3 < £ < 7

Error-correcting output coding

For medium-sized problems (8 < k£ < 11), a subset of columns from
an exhaustive code will work well

For longer codes, randomly generated bitstrings of length L will
have an average Hamming distance of % (which can be heuristically

Improved)

Sensible code lengths for £ classes range from log, & to —22‘ 1

Assignment of classes to codes doesn’t matter

10

Error-correcting output coding

Each classifier learns a subset of the interclass boundaries
Each boundary is learned by many classifiers

Decoding is a kind of voting (and so reduces variance)
ECOC decoding also apparently reduces bias

Can be combined with other methods (e.g., bagging) to reduce error
rate even further

11

Error-correcting output coding

Applied to text classification using naive Bayes (Berger 1999):

20 Newsgroups
1 1 1

5 10 20 100
bits

Yahoo science

10 20 41 100
bits

Four universities
I

8 20
bits

Yahoo health

10 20 36 100
bits

500

12

Boosting

The committee methods we’ve seen so far take reasonably accurate
single classifiers and improve them

How accurate do the base members need to be?
Weak vs. strong (“probably approximately correct”) learners

Hypothesis Boosting Problem (Valiant 1989)— does the existence of
a weak learner imply the existence of a stronger learner?

Shapire (1990) offered an algorithm for boosting weak learners to
strong learners

13

Boosting

Shapire’s proto-boosting algorithm forms the basis for a series of
ensemble methods

First, train a weak learner W; on N; examples

Next, use that learner to filter new training examples

* Flip a coin

% If heads, use W, to classify new examples until one is
misclassified, and add that to a new training set

* If tails, use W, to classify new examples until one is correctly
classified, and add that

* Continue until N; examples have been collected.

Now we’ve got a second training set (on which 17 will have an error
rate of 50%) that we use to train a second weak learner W

14

Boosting

Finally, collect N; examples on which 1W; and W5 disagree, and use
them to train Ws

To classify a new example, send it to W; and Ws. If they don’t agree,
use Ws

If the error rate of the weak learners is ¢, the error rate of the
ensemble is bounded by:

g(e) = 3¢* — 2¢°

By applying the procedure recursively, the error rate can be made
arbitrarily small, thus converting a weak learner into a strong learner

In practice, this will require vast quantities of training data and so
Isn’t very practical

15

a(e)

1.0

0.8

0.6

0.4

0.2

0.0

Boosting

0.4

0.6

0.8

1.0

16

Boosting

A family of boosting algorithms improved on Shapire’s (1990)
filtering algorithm

What boosting methods have in common is that they train weak
learners on different training distributions

Unlike bagging, boosting lowers both the bias and the variance
So, boosting may be helpful with a wide range of base learners,

Most popular is decision stumps (high bias, low variance)

17

AdaBoost

Freund and Schapire (1997) present AdaBoost (what most people
mean when they refer to “boosting”)

Suppose we have a two class problem, with features X and classes
Y € {—1,1}, and a classifier G : X — {—1,1}

The training error of the classifier is:

1

e= NZI(% 7 G(zi))

18

AdaBoost

Initialize weights w; to 1/N, ¢ =1,..., N

Form=1to M

= fit a classifier G,,,(X) to X using weights w§m>

* compute training error: €, = ngm)l(yi # G (5))
« compute oy, = 3 log =5

* set new weights:

GO w™ exp[—amyiGum(2:))]

1 Zm

Return

19

AdaBoost

0.0

0.2

0.4

0.6

0.8

1.0

20

AdaBoost

The training error of GG is bounded by:

ST £ G@)) < o esplw Y G

< exp[-2) 72

where
1

Tm = 5 — €m

2

1 . .
As long as v, < 3, the overall error rate will drop exponentially

21

AdaBoost

Iterations

22

AdaBoost

Weak learners can be very simple (decision stumps)

AdaBoost performs extremely well, sometimes considered the best
black-box learning method

Why it works so well has been a bit of a mystery, spurring some
Important theoretical advances

Extensions to multiclass classifiers and regression

23

VC dimension

Looking at training error Is interesting, but doesn'’t tell us everything

What we really want to know is how well the model generalizes to
new data

An intuition: simple hypotheses generalize better from training data
than complex hypotheses

How do we measure the complexity of a hypothesis space?

The key notion is the Vapnik-Chernovenkis (VC) dimension a
measure of how twisty the decision boundaries in a hypothesis
space can be

24

VC dimension

The number of model parameter is a rough measure of complexity:

more parameters = more Complex

But compare a linear boundary oy + a;z > 0, with two parameters,
to a boundary like sin ax > 0, with one

The VC dimension of a class of functions { f(z,)} is the largest
number of points which can be shattered by members of { f(z,)}

A set of points is shattered be a class of function if all possible
binary class assignments can be perfectly separeted by a member
of the class

25

VC dimension

26

VC di .
7N\ —\\
/N | I
/ b | /
/ ! | l
/ ' | | l
/ ' | | I
I \ | | I
I : | | I
I \ | | I
I \ | | I
I \ | | I
I \ | | /
l \ | | I
I : | | I
I ‘ | \ I
I ‘ | \ I
I ‘ | ‘ I
\ ’ | I
I ‘ | ‘ I
\
A N I AAA \ BB, A
\ : | ’ \ I
\ : | ’ \ ’
\ I | ’ \ I
\ l | | \ ’
\ I | | \ I
\ : | | \ I
\ I | | \ I
\ ; | | \ I
\ l | | \ I
\ ! | | \ I
\ ! | | \ I
\ ! | | \ l
\ J | | \ l
\ / | | \ l
\ ! | | \ /
/ | | \ l
/ | \ /
/ .
\d/ :

27

VC dimension

In general, a hyperplane in r dimensions has a VC dimension of
r+1

The class {sin ax} can shatter any number of points, and has an
infinite VC dimension

Given a classifier with a VC dimension of ~ and N training
examples, then is h < N we have with probability 1 — ¢:

R[G] < RemplG] + \/ % (h <log¥ * 1) +log §>

Note that this increases with A and decreases with NV

28

AdaBoost

Back to AdaBoost, we have:

RIG) < RunylG] + O (Aff)

where M is the number of iterations, d is the VC dimension of the
base learner, and N is the number of training examples

So, to limit generalization error, we should limit M and d

But, a puzzle: sometimes with AdaBoost, generalization error
continues to fall even when training error has reached zero!

29

AdaBoost

This apparent ‘superlearning’ can be explained in terms of the
margin, a measure of the confidence in a classification:

marging(z,y) = Yy ngGm(w)

Shapire, et al. (1998) show that for any 8 > 0 the generalization
error is at most:

R[G] < Plmarging(z,y) < 0] + O <\/ Nd92>

Extra iterations can increase margins even after training error is zero

This bound doesn’'t depend on M, so extra iterations need not
Increase the generalization error

30

AdaBoost

What is AdaBoost really doing?

It constructs a linear combination of base learners G,,, which
minimizes the exponential loss:

L(y,G(x)) = expl—yG(z)]

= exp [—y > mGm()

So, AdaBoost is a species of forward stagewise additive modeling

More to come on this. ..

31

Committee machines

Combinations of classifiers can perform better than any one
classifier, so long as:

* each classifier is more accurate than randomly guessing
* the errors made by each classifier are uncorrelated

Various strategies for producing useful committees

Bagging is especially useful for reducing variance in high
variance/low bias classifiers (like decision trees)

Error-correcting output coding extends binary classfiers to
multi-class problems, and reduces both bias and variance

Boosting is a very powerful method, which reduces bias and
variance, produces very lower error rates, and is highly resistant to
overtraining

32

