
Committee machines

• Committe machines (or ensemble machines) combine the
predictions of more than one classifier

• Committee machines depend on the members being reasonably
accurate (better than guessing) and diverse (errors are
uncorrelated)

• Majority vote and weighted majority are simple ensemble methods

• Committee machines reduce statistical error, computational error,
and representational error

1

Generating diversity

• Given training data and a learning method, how to we generate a
diverse committee of classifiers?

• We can inject randomness into the learning procedure by varying
initial conditions or hyperparameters

• Bagging (bootstrap aggregation): randomly generate lots (25–200)
of training sets by sampling the original training data with
replacement majority vote

• Reduces variance, so most effective for high variance, low bias
classifiers

2

Generating diversity

• Another strategy is to select disjoint subsets of features

• Reduces dimensionality for each classifier (important for classifiers
like neural nets)

• Each resulting classifier must still be fairly accurate, so only works if
features can be broken down into independent subsets

• Volcano identification (Cherkauer 1996) – 32 neural nets using 8
subsets of 119 features × 4 network sizes

• Not especially useful for NLP (but: cotraining)

3

Generating diversity

• We can also generate multiple classifiers by manipulating their
target functions

• Error-correcting output codes are redundant encodings which allow
reliable data transmission in the presence of noise

• Classifications are a kind of data transmission, and classification
errors are a kind of noise

• We can use error-correcting strategies to reduce classification error
(Dietterich and Bakari 1995)

4

Error-correcting output coding

• Suppose we have a four-class problem. We could construct a binary
classifier for each class (one-per-class method):

c1 1000
c2 0100
c3 0010
c4 0001

• This can, of course, be reduced (distrubuted coding):

c1 00
c2 10
c3 01
c4 11

5

Error-correcting output coding

• We can also produce a redudant code, using 10 binary classifiers:

c1 1010011100
c2 0100011101
c3 1001100011
c4 1011111010

• If the bitstring produced by a test example doesn’t match one of
these codes exactly, choose the one with the fewest number of
different bits (Hamming distance)

• For example, if our 10 binary classifiers produced the bitstring:

1010011101

we would predict class c4

6

Error-correcting output coding

• If the minimum Hamming distance between any two classes is d,
then the encoding can correct at least bd−1

2 c single-bit errors

• In the one-per-class case d = 2, and for the minimal encoding d = 1
(no error correction!)

• In the redundant code d = 4, so we can survive at least one error
and still get the answer right

• To apply ECOC classification, we need to produce a suitable
encoding

7

Error-correcting output coding

• Row separation increases the minimum Hamming distance between
codes, and so increases the number of errors which can be
corrected

• Column separation increases the independence of the individual
classifiers, reducing the probability of simultaneous errors

• Exhaustive code for k classes uses 2k−1 − 1 bits

• First class gets a code of all 1’s

• The ith class gets alternating runs of 2k−i zeros and ones

8

Error-correcting output coding

• Exhaustive code for five classes:

c1 111111111111111
c2 000000001111111
c3 000011110000111
c4 001100110011001
c5 010101010101010

• Minimum Hamming distance is 8, and no two columns are identical
or complementary

• Only really practical for 3 < k ≤ 7

9

Error-correcting output coding

• For medium-sized problems (8 < k ≤ 11), a subset of columns from
an exhaustive code will work well

• For longer codes, randomly generated bitstrings of length L will
have an average Hamming distance of L

2 (which can be heuristically
improved)

• Sensible code lengths for k classes range from log2 k to 2k−1
2

• Assignment of classes to codes doesn’t matter

10

Error-correcting output coding

• Each classifier learns a subset of the interclass boundaries

• Each boundary is learned by many classifiers

• Decoding is a kind of voting (and so reduces variance)

• ECOC decoding also apparently reduces bias

• Can be combined with other methods (e.g., bagging) to reduce error
rate even further

11

Error-correcting output coding

• Applied to text classification using naive Bayes (Berger 1999):

12

Boosting

• The committee methods we’ve seen so far take reasonably accurate
single classifiers and improve them

• How accurate do the base members need to be?

• Weak vs. strong (“probably approximately correct”) learners

• Hypothesis Boosting Problem (Valiant 1989)– does the existence of
a weak learner imply the existence of a stronger learner?

• Shapire (1990) offered an algorithm for boosting weak learners to
strong learners

13

Boosting

• Shapire’s proto-boosting algorithm forms the basis for a series of
ensemble methods

• First, train a weak learner W1 on N1 examples

• Next, use that learner to filter new training examples

? Flip a coin
? If heads, use W1 to classify new examples until one is

misclassified, and add that to a new training set
? If tails, use W1 to classify new examples until one is correctly

classified, and add that
? Continue until N1 examples have been collected.

• Now we’ve got a second training set (on which W1 will have an error
rate of 50%) that we use to train a second weak learner W2

14

Boosting

• Finally, collect N1 examples on which W1 and W2 disagree, and use
them to train W3

• To classify a new example, send it to W1 and W2. If they don’t agree,
use W3

• If the error rate of the weak learners is ε, the error rate of the
ensemble is bounded by:

g(ε) = 3ε2 − 2ε3

• By applying the procedure recursively, the error rate can be made
arbitrarily small, thus converting a weak learner into a strong learner

• In practice, this will require vast quantities of training data and so
isn’t very practical

15

Boosting

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ε

g(
ε)

16

Boosting

• A family of boosting algorithms improved on Shapire’s (1990)
filtering algorithm

• What boosting methods have in common is that they train weak
learners on different training distributions

• Unlike bagging, boosting lowers both the bias and the variance

• So, boosting may be helpful with a wide range of base learners,

• Most popular is decision stumps (high bias, low variance)

17

AdaBoost

• Freund and Schapire (1997) present AdaBoost (what most people
mean when they refer to “boosting”)

• Suppose we have a two class problem, with features X and classes
Y ∈ {−1, 1}, and a classifier G : X → {−1, 1}

• The training error of the classifier is:

ε =
1
N

∑
I(yi 6= G(xi))

18

AdaBoost

• Initialize weights wi to 1/N, i = 1, . . . , N

• For m = 1 to M

? fit a classifier Gm(X) to X using weights w
(m)
i

? compute training error: εm =
∑

w
(m)
i I(yi 6= Gm(xi))

? compute αm = 1
2 log 1−εm

εm

? set new weights:

w
(m+1)
i =

w
(m)
i exp[−αmyiGm(xi))]

Zm
, i = 1, . . . , N

• Return

G(x) = sign

[∑
m

αmGm(x)

]

19

AdaBoost

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

ε

α

20

AdaBoost

• The training error of G is bounded by:

1
N

∑
I(yi 6= G(xi)) ≤ 1

N

∑
exp[−yi

∑
m

αmGm(xi)]

≤ exp[−2
∑
m

γ2
m]

where
γm =

1
2
− εm

• As long as γm ≤ 1
2, the overall error rate will drop exponentially

21

AdaBoost

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Iterations

ε

22

AdaBoost

• Weak learners can be very simple (decision stumps)

• AdaBoost performs extremely well, sometimes considered the best
black-box learning method

• Why it works so well has been a bit of a mystery, spurring some
important theoretical advances

• Extensions to multiclass classifiers and regression

23

VC dimension

• Looking at training error is interesting, but doesn’t tell us everything

• What we really want to know is how well the model generalizes to
new data

• An intuition: simple hypotheses generalize better from training data
than complex hypotheses

• How do we measure the complexity of a hypothesis space?

• The key notion is the Vapnik-Chernovenkis (VC) dimension a
measure of how twisty the decision boundaries in a hypothesis
space can be

24

VC dimension

• The number of model parameter is a rough measure of complexity:
more parameters = more complex

• But compare a linear boundary α0 + α1x ≥ 0, with two parameters,
to a boundary like sinαx ≥ 0, with one

• The VC dimension of a class of functions {f(x, α)} is the largest
number of points which can be shattered by members of {f(x, α)}

• A set of points is shattered be a class of function if all possible
binary class assignments can be perfectly separeted by a member
of the class

25

VC dimension

A

B

B

A A

A

B

A

A

B

A

A

B

26

VC dimension

A A AAA AB BB B B B BBAA

27

VC dimension

• In general, a hyperplane in r dimensions has a VC dimension of
r + 1

• The class {sinαx} can shatter any number of points, and has an
infinite VC dimension

• Given a classifier with a VC dimension of h and N training
examples, then is h < N we have with probability 1− δ:

R[G] ≤ Remp[G] +

√
1
N

(
h

(
log

2N

h
+ 1
)

+ log
4
δ

)

• Note that this increases with h and decreases with N

28

AdaBoost

• Back to AdaBoost, we have:

R[G] ≤ Remp[G] + Õ

(√
Md

N

)

where M is the number of iterations, d is the VC dimension of the
base learner, and N is the number of training examples

• So, to limit generalization error, we should limit M and d

• But, a puzzle: sometimes with AdaBoost, generalization error
continues to fall even when training error has reached zero!

29

AdaBoost

• This apparent ‘superlearning’ can be explained in terms of the
margin, a measure of the confidence in a classification:

marginG(x, y) =
y
∑

αmGm(x)∑
|αm|

• Shapire, et al. (1998) show that for any θ > 0 the generalization
error is at most:

R[G] ≤ P [marginG(x, y) ≤ θ] + Õ

(√
d

Nθ2

)

• Extra iterations can increase margins even after training error is zero

• This bound doesn’t depend on M , so extra iterations need not
increase the generalization error

30

AdaBoost

• What is AdaBoost really doing?

• It constructs a linear combination of base learners Gm which
minimizes the exponential loss:

L(y, G(x)) = exp[−y G(x)]

= exp

[
−y
∑
m

αmGm(x)

]

• So, AdaBoost is a species of forward stagewise additive modeling

• More to come on this. . .

31

Committee machines

• Combinations of classifiers can perform better than any one
classifier, so long as:

? each classifier is more accurate than randomly guessing
? the errors made by each classifier are uncorrelated

• Various strategies for producing useful committees

• Bagging is especially useful for reducing variance in high
variance/low bias classifiers (like decision trees)

• Error-correcting output coding extends binary classfiers to
multi-class problems, and reduces both bias and variance

• Boosting is a very powerful method, which reduces bias and
variance, produces very lower error rates, and is highly resistant to
overtraining

32

