
Homework

• Project: CoNLL 2004 shared task

• Homework for this week

• Homework for two weeks from today:

? Write a program which calculates the probability of each verb
sense from the training data

? Don’t rely on the verb sense tags, though you can use them for
debugging

? Turn in program, plus sense probabilities for exchange,

1

http://www.lsi.upc.es/~conll04st/roles.html

Committee machines

• AdaBoost is a form of forward stagewise additive regression,
minimizing the the exponential loss of a model

• AdaBoost also increases the margin of the training data, reducing
generalization error even after training error is zero

• Self-training and co-training use ensembles of learners to take
advantage of under-annotated training data

• Committee machines generally outperform all but the best single
learners, but by any measure are more complex – so what about
Occam’s Razor?

2

Generalization

• What happened to the curse of dimensionality?

• Dimensionality (as number of features) has no clear interpretation
for complex modeling procedures

• And what about simplicity? Didn’t we say simpler = lower variance?

• How is an ensemble of trees simpler than a single tree?

• How is MaxEnt simpler than Naive Bayes?

• How is MaxEnt+prior simpler than MaxEnt?

3

Generalization

• Notions like dimensionality and simplicity aren’t really what we’re
interested in

• Dimensionality reduction and simplification are meant to improve
generalization – the ability to abstract away from accidental details
of a training sample

• A better way to get at that is by restricting capacity

• Deleting features or simplifying models may (or may not) reduce the
representational capacity of a model

4

Generalization

• Take MaxEnt models with a Gaussian prior:

λ∗ = argmax
λ

L(λ)− 1
2σ2

∑
i

λ2
i

• This is equivalent to:
λ∗ = argmax

λ
L(λ)

where ∑
i

λ2
i ≤ s2

• The solution is the point which maximizes L and falls inside the
hypersphere with radius s

• The prior reduces the capacity of the model, which (empirically)
improves generalization

5

Generalization

• The VC dimension of a class of functions {f(x, α)} is the largest
number of points which can be shattered by members of {f(x, α)}

• VC dimension is another way of measuring capacity, and we’ve
already seen how this bounds generalization error.

• Given a classifier with a VC dimension of d and N training
examples, then if d ≤ N we have with probability 1− δ the error rate
is bounded by:

2
N

(
d log

2eN

d
+ log

2
δ

)

6

Generalization

• What about complex adaptive procedures?

• The winning entry for the 2001 KDD Cup uses a 2–20 features, out
of 140,000 (and 1,900 training examples): what’s the
dimensionality?

• Generalized Degrees of Freedom (Ye 1998) – randomly perturb
target values y by δ, and see how the fitted values vary

• Covariance Inflation Criterion (Tibshirani and Knight 1999) –
randomly scramble target values y and see how the fitted values
vary

• Both of these methods measure the flexibility of a modeling
procedure

7

Perceptron

• A non-linear model of a neuron used in artificial neural networks
(ANNs) combines a set of weighted inputs through a biased
summing junction and an activation function.

• The McCulloch-Pitts neuron (McCulloch and Pitts 1943) or
perceptron (Rosenblatt 1962) is a particular neural model which
uses a linear combination of its inputs:

v = w0 +
∑

wi xi

and whose activation function is the threshold function (aka: hard
limiter, signum):

y =
{

+1 if v ≥ 0
−1 otherwise

8

Perceptron

• Rosenblatt’s perceptron algorithm iteratively updates the weights w
to fit a training sample

• Start with w = 0

• Take each training example xi, and compute:

ŷi = sign(
∑

j

wjxj
i) = sign(w · xi)

• Next update weights (where 0 < η ≤ 1 is the learning rate):

w ← w + η(yi − ŷi))xi

• Repeat until w stops changing

9

Perceptron

• Small η gives stable weight estimates, large η gives fast adaptation

• If the training data is linearly separable, then this is guaranteed to
converge

• If the training data is not linearly separable, then it may cycle
infinitely among sub-optimal solutions!

• The perceptron convergence algorithm is a kind of gradient descent
to maxmize the functional margin:

γ = min
i

yi(xi · w)

10

Perceptron

• The functional margin γ is non-negative if the data is separated by
the hyperplane w, and the larger γ is, the greater the separation

• Novikoff (1962): Suppose some weight vector w0 (where ||w|| = 1)
correctly classifies all examples in the training set with margin γ, and
R = maxi ||xi||. Then the number of corrections made by the
perceptron algorithm is at most:

(
2R

γ

)2

• The difficulty of learning a concepts depends on the the pattern
length divided by the margin

11

Perceptron

• What if the data is not linearly separable? We define a margin slack
variable with respect to an example xi and a target margin γ:

ξi = max(0, γ − yi(xi · w))

• The slack variable reflects by how much xi fails to have a margin of γ

• Freund and Schapire (1998): If D = ||ξ||, then the number of
mistakes made on on one pass throught the training data is at most:

(
2(R + D)

γ

)2

12

Perceptron

• The perceptron algorithm learns linear boundaries, and so can’t
represent many real-world concepts

• In the 1960’s this led to general discouragement, followed by
multi-layer perceptrons and more complex ANNs (but these have
their own problems)

• Alternatively, we could use more powerful learning methods
(decision trees, k-nearest neighbor)

• Or, we could just not worry about it (naive Bayes, MaxEnt)

• Or, we could find a way of converting a non-linearly separable
problem into a linearly separable one by mapping between feature
spaces

13

Perceptron

• Suppose the concept we want to learn depends not on individual
features but on combinations of features (e.g., XOR, 8)

• We could map our original feature space into a larger one which
captures these relationships (monomial features):

(x1, x2)→ (x2
1, x

2
2, x1 x2)

• Alas, for an n dimensional input vector, the number of monomials of
degree d is: (

d + n− 1
d

)
=

(d + N − 1)!
d! (N − 1)!

• But, there is a trick that lets us use these large derived feature
spaces without actually computing them

14

Perceptron (dual form)

• First we need the dual form of the perceptron algorithm

• The perceptron algorithm works by adding or subtracting
misclassified examples from an arbitrary initial weight vector

• When it converges, the weight vector will be:

w =
∑

i

αi yi xi

where αi > 0 is the embedding strength of xi, proportional to the
number of times misclassification of xi caused the weights to be
updated

• Given a fixed training set, the solution can be represented either by
w or by α

15

Perceptron (dual form)

• We rewrite the decision rule as:

ŷ = sign(w · x)

= sign((
∑

αi yi xi) · x)

= sign(
∑

αi yi (xi · x))

• And the update of the perceptron algorithm becomes:

If
yi(

∑
j

αj yj(xj · xi)) ≤ 0

then
αi ← αi + η

16

Kernel functions

• Notice now that the training data only comes into play via the Gram
matrix G:

Gij = xi · xj

• The dot product is one measure of the similarity between xi and xj,
but there are others

• In general, we want to define a mapping Φ from our feature space
into RN , and a kernel function:

k(x, x′) = Φ(x) · Φ(x′)

17

Kernel functions

• In the case of an ordered polynomial kernel, we have:

Φ : (x1, x2)→ (x2
1, x

2
2, x1 x2, x2 x1)

and

Φ(x) · Φ(x′) = x2
1 (x′

1)
2 + x2

2 + (x′
2)

2 + 2 x1 x2 x′
1 x′

2 = (x · x′)2

• For polynomial kernels in general:

Φd(x) · Φd(x′) = (x · x′)d

18

Kernel functions

• Thus, we can work with a very high dimensional ‘virtual’ space with
essentially the same amount of effort as in the original feature space

• Mercer’s Theorem states that any kernel function which meets
certain general conditions can be represented as a dot product in a
high dimensional space

• This leads to the kernel trick : any algorithm which uses a dot
product can be rewritten to use a Mercer kernel instead

• A ‘kernelized’ perceptron algorithm can fit a hyperplane to a
non-linear mapping of a feature space with little or no extra
computational cost

• But, we still pay a statistical cost for those extra features (there’s no
escaping the curse)

19

