Homework

- For Wednesday 3/9:
 - Get bigram and unigram frequencies from ANC website:
 http://americannationalcorpus.org/frequency.html
 - Implement two of the collocation-finding methods described in chapter 5
 - Find the top n bigrams by each measure
 - Write it up – a paragraph or two describing what's going on
 - Midterm next week

Noisy channel model

- Information theory can be used for decoding messages using the noisy channel model

- We imagine communication along a low-quality telephone line:
 - sender creates a message S
 - message is transmitted over a communication channel which produces random changes to the message
 - received gets a message R

- The challenge is to guess what the original message was using knowledge of source and noise distributions

Information theory

- We can use conditional entropy $H(X|Y)$ to measure the amount of information conveyed by the communication channel

- $H(S|R)$ is a measure of how surprised you would be to find out that the message being sent is S, given that you received R

- For an ideal telegraph, $H(S|R) = 0$

- For an ideal cypher, $H(S|R) = H(S)$

- For most applications, $H(S|R)$ is somewhere in between

Noisy channel model

- Noisy channel model developed by Shannon to describe optimal error correcting codes

- For stochastic NLP, we imagine the observed text is the output of a noisy channel.

- The challenge is to find a decoder the average surprise in finding out what the underlying message was, given the observed text

- Formally, this comes down to minimizing $H(S|R)$ or maximizing $I(S;R)$
Noisy channel model

• First used for translation by IBM’s T.J. Watson research lab in 1970’s
• Many different problems can be posed as a noisy channel model
• Noisy channel model is applicable whenever we want to guess an unknown thing (e.g., a correctly spelled word) given a known thing (e.g., a correctly spelled word)
• We need a model of underlying message probabilities $P(S)$, plus a noise model $P(R|S)$

Noisy channel model

• Spelling correction
 – $S=$perfect text, $R=$text with errors
 – $P(S)=\text{prob. of perfect text}, P(R|S)=\text{error model}$
• Translation
 – $S=$Target language, $R=$Source language
 – $P(S)=\text{prob. of target language}, P(R|S)=\text{translation model}$
• Speech recognition
 – $S=$word sequence, $R=$speech signal
 – $P(S)=\text{prob. of word sequence}, P(R|S)=\text{acoustic model}$

Noisy channel model

• Translation:

 Ik zit op de bank en kijk naar het televisie.

• We imagine that this sentence was actually produced in English and deformed by a noisy communication channel.

• To reconstruct the (hypothetical) English original, we need a model of the source probabilities $P(\text{English})$ and the error probabilities $P(\text{Dutch}|\text{English})$.

Noisy channel model

• We work backwards from the error probabilities $P(\text{Dutch}|\text{English})$ to get two possible English sources:

 I’m at the bank watching television.
 I’m sitting on the sofa watching television.

• One of these is much more likely as an English sentence than the other.
Noisy channel model

- Other alternatives have high P(English) and low P(Dutch|English):

 Have a nice day.

- Or, low P(English) and low P(Dutch|English):

 My hovercraft is full of eels.

- But given high enough P(Dutch|English), even a very low P(English) sentence might be chosen:

 Mijn hovercraft zit vol paling.

Independence

- All statistical methods we looked at make the “i.i.d.” assumption

- This is clearly false for language, though we can sometimes fake it (bag of words model)

- Noisy channel models require a language model which assigns a probability to a text:

 $$P(w_1, \ldots, w_n) = \prod_{i=1}^{n} P(w_i)$$

- The bag of words assumption makes estimation of the model easy, but is also very unrealistic:

 Also assumption bag but easy estimation is makes model of of, the the unrealistic very words.

- Instead, we can apply the chain rule:

 $$P(w_1, \ldots, w_n) = P(w_1) \times P(w_2|w_1) \times P(w_3|w_1, w_2) \times \ldots \times P(w_n|w_1, \ldots, w_{n-1})$$

 $$= \prod_{i=1}^{n} P(w_i|w_1, \ldots, w_{i-1})$$

- The fully independent model is a multinomial distribution with one parameter per word (conservatively, 20,000 parameters)

- The fully dependent model is a multinomial distribution with one parameter per word per context (something like 10^{220} parameters)

- By comparison, there are maybe 10^{79} atoms in the universe.