Homework

• For Monday 3/14:
 – Get bigram and unigram frequencies from ANC website:
 http://americannationalcorpus.org/frequency.html
 – Implement two of the collocation-finding methods described in chapter 5
 – Find the top n bigrams by each measure
 – Write it up – a paragraph or two describing what’s going on

• Read chapter 6

• Midterm week after next

Floating point arithmetic

• Floating point numbers are stored as a mantissa and an exponent

• IEEE floating point formats:

<table>
<thead>
<tr>
<th>precision</th>
<th>min</th>
<th>max</th>
<th>eps</th>
<th>digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>1.2×10^{-38}</td>
<td>3.4×10^{38}</td>
<td>1.2×10^{-7}</td>
<td>7</td>
</tr>
<tr>
<td>double</td>
<td>2.2×10^{-308}</td>
<td>1.8×10^{308}</td>
<td>2.2×10^{-16}</td>
<td>16</td>
</tr>
</tbody>
</table>

• Just because you can represent 10^{300} doesn’t mean you get 300 significant digits!

• Default in python and perl is double precision

• Don’t use single precision (float) unless you have a good reason

Floating point arithmetic

• Digital computers can’t represent real numbers:

 bulba% python
 Python 2.2.1 (#1, Aug 30 2002, 12:15:30)
 [GCC 3.2 20020822 (Red Hat Linux Rawhide 3.2-4)] on linux2
 Type "help", "copyright", "credits" or "license" for more information
 >>> 3.3
 3.2999999999999998
 >>>

• Financial calculations use integers

• Scientific calculations use approximations, which vary in their accuracy

• Standard for floating point calculations: IEEE 754

Floating point arithmetic

• It’s easy to lose precision:

 $0.2 - 0.0 = 0.20000000000000001$
 $100000.2 - 100000.0 = 0.1999999999708962$

• Things to watch out for:
 – subtractions of numbers that are nearly equal,
 – additions of numbers whose magnitudes are nearly equal, but whose signs are opposite
 – additions and subtractions of numbers that differ greatly in magnitude
 – multiplying by very small numbers or dividing by very large numbers
 – avoid unstable/ill-conditioned algorithms
Floating point arithmetic

- Many problems with probabilities can be avoided by using log probabilities instead
 - exponents become products
 - products become sums
- Exact comparisons between floating point numbers can be misleading
- The same operations performed in a different order or on different hardware may given different results

Independence

- All statistical methods we looked at make the "i.i.d." assumption
- This is clearly false for language, though we can sometimes fake it (bag of words model)
- Noisy channel models require a language model which assigns a probability to a text:
 \[
P(w_1, \ldots, w_n) = \prod_{i=1}^{n} P(w_i)
\]
- The bag of words assumption makes estimation of the model easy, but is also very unrealistic:
 Also assumption bag but easy estimation is makes model of of, the the unrealistic very words.

Independence

- Instead, we can apply the chain rule:
 \[
P(w_1, \ldots, w_n) = P(w_1) \times P(w_2|w_1) \times P(w_3|w_1, w_2) \times \ldots \times P(w_n|w_1, \ldots, w_{n-1})
 = \prod_{i=1}^{n} P(w_i|w_1, \ldots, w_{i-1})
\]
- The fully independent model is a multinomial distribution with one parameter per word (conservatively, 20,000 parameters)
- The fully dependent model is a multinomial distribution with one parameter per word per context (something like 10^{220} parameters)
- By comparison, there are maybe 10^{79} atoms in the universe.
Markov chains

• A particularly simple way of forming equivalence classes treats language as a Markov chain

• A Markov chain is a sequence of random variables in which, given the present, the future is conditionally independent of the past:

\[P(W_n = w_n | W_1 = w_1, \ldots, W_{n-1} = w_{n-1}) = P(W_n = w_n | W_{n-1} = w_{n-1}) \]

• Only a fixed length previous history is relevant: Markov assumption, limited horizon

• Plus language is stationary and ergodic \(\rightarrow \) i.i.d.

Markov models

• First order
 To him swallowed confess hear both. Which. Of save on train for are ay device and rote life have.

• Second order
 Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.

• Third order
 This shall forbid it should be branded, if renown made it empty.

• Fourth order
 They say all lovers swear more performance than they are wont to keep obliged faith unforfeited!

Markov chains

• Taking language as a Markov chain leads to \(n \)-gram models:

\[P(w_1, \ldots, w_n) = \prod_{i=1}^{n} P(w_i | \phi(w_1, \ldots, w_{i-1})) = \prod_{i=1}^{n} P(w_i | w_{i-2}, w_{i-1}) \]

• Bigrams = first order Markov model, trigram = second order, four-gram = third order, etc

• Generally speaking, higher order models do a better job of predicting probabilities, but have more parameters (and so require more training data)

Markov models

• First order
 Months the my and issue of year foreign new exchange’s september were recession exchange new endorsed a acquire to six executives.

• Second order
 Last December through the way to preserve the Hudson corporation NBEC Taylor would seem to complete the major central planners 1.5% of the USE has already old MX corporation of living on information such as more frequently fishing to keep her.

• Third order
 They also point to $99.6 billion from 204063% of the rates of interest stores as Mexico and Brazil on market conditions
Parameter estimation

- For a trigram model:
 \[P(w_n|w_{n-2}, w_{n-1}) = \frac{P(w_{n-2}, w_{n-1}, w_n)}{P(w_{n-2}, w_{n-1})} \]

 So, we need to estimate the marginal bigram and trigram probabilities.

- If we want to estimate the parameter vector \(\theta \) from a training corpus \(c \), then find:
 \[
 \hat{\theta} = \arg\max_{\theta} P(\theta|c) = \arg\max_{\theta} P(c|\theta) P(\theta) / P(c)
 \]

Cross entropy

- To evaluate language models, we use it to play the Shannon game:

 A Russian spacecraft filled in for the _______

- At each point, there is some true probability distribution \(P(w_i|w_1, \ldots, w_{i-1}) \) and a probability \(Q(w_i|w_1, \ldots, w_{i-1}) \) predicted by our model

- We can use the KL divergence \(D(P||Q) \) as a measure of the quality of a language model \(Q \)

Parameter estimation

- If we assume \(P(\theta) \) is uniform, then we get the maximum likelihood estimate:
 \[
 \hat{\theta} = \arg\max_{\theta} P(c|\theta)
 \]

- For trigram probabilities, the MLE is:
 \[
 P(w_1, w_2, w_3) = \frac{C(w_1, w_2, w_3)}{N}
 \]

 - Maximum likelihood sounds good, but how well does it work?
 - We need a way to measure the quality of a language model

Cross entropy

- Recall that the cross entropy between two distributions is related to their KL divergence:

 \[
 H_P(X, Q) = H_P(X) + D(P||Q) = -\sum_x p(x) \log p(x) + \sum_x p(x) \log q(x) \]

 \[
 = -\sum_x p(x) \log q(x)
 \]
Cross entropy

- We want to know the average per word cross entropy between the true distribution \(P \) and our model \(Q \) for language \(L \):

\[
H(L, Q) = -\lim_{n \to \infty} \frac{1}{n} \sum_{w_1^n} p(w_1^n) \log q(w_1^n) \\
= -\lim_{n \to \infty} \frac{1}{n} E[\log q(w_1^n)] \\
\approx -\lim_{n \to \infty} \frac{1}{n} \log q(w_1^n)
\]

Cross entropy

- Given a sample of text \(w_1, \ldots, w_n \), this estimate of the cross entropy of a language model (sometimes called \(\text{logprob} \)) is:

\[
LP(Q) = -\frac{1}{n} \log q(w_1^n) \\
= -\frac{1}{n} \log \prod_{i=1}^n q(w_i|w_1, \ldots, w_{n-1}) \\
= -\frac{1}{n} \sum_{i} \log q(w_i|w_1, \ldots, w_{n-1})
\]

- In playing the Shannon game, this is the average number of guesses you will have to make given your imperfect model \(Q \)

- The perplexity \(PP \) is simply \(2^{LP} \), (assuming \(\log_2 \))

Parameter estimation

- Back to the MLE – what’s the probability assigned to a word in a context in which it did not occur in the training data?

\[
P(w_n|w_{n-2}, w_{n-1}) = \frac{P(w_{n-2}, w_{n-1}, w_n)}{P(w_{n-2}, w_{n-1})} \\
= \frac{C(w_{n-2}, w_{n-1}, w_n)}{C(w_{n-2}, w_{n-1})} \\
= 0
\]

- The likelihood of a corpus which contains this will then be 0, and the cross entropy (and perplexity) is \(\infty! \)

- The MLE uses only information from the training text – how can we do better?

Parameter estimation

- A simple trick is to increase the size of the history equivalence classes

- Replace words occurring once in the training data (\(\text{hapax legomena} \)) with a designated symbol \(\text{OOV} \) or \(\text{UNK} \)

- Replace any unknown words in the test sequence (i.e., words which occur zero or one time in the training data) with the same symbol

- We never get zero probabilities this way, but we end up assigning all \(\text{OOV} \)'s the same probability

- Curse of Zipf