Parameter estimation

• For a trigram model:
 \[P(w_n|w_{n-2}, w_{n-1}) = \frac{P(w_{n-2}, w_{n-1}, w_n)}{P(w_{n-2}, w_{n-1})} \]

So, we need to estimate the marginal bigram and trigram probabilities.

• If we want to estimate the parameter vector \(\theta \) from a training corpus \(c \), then find:
 \[\hat{\theta} = \arg\max_{\theta} P(\theta|c) \]
 \[= \arg\max_{\theta} \frac{P(c|\theta) P(\theta)}{P(c)} \]

Laplace’s Law of Succession

• Laplace (c. 1775) was interested in inductive reasoning: what can we conclude from a sequence of observations?

• Suppose we’ve got a set of coins labeled 0, \ldots, N such that each come up heads with probability \(i/N \)

• Given that you’ve seen one of these coins come up heads \(n \) times in a row, which coin are you looking at?

• Averaging over all the coins, the probability of getting \(n \) heads in a row is:
 \[P(n) = \frac{1}{N+1} \sum_{i}^{N} \left(\frac{i}{N} \right)^{n} \]
Laplace’s Law of Succession

• The probability of getting heads on the next toss is:

\[P(n+1|n) = \frac{P(n+1)}{P(n)} \]

• If we take the limit as \(N \to \infty \), then

\[
\lim_{N \to \infty} P(n) \approx \int_0^1 x^n dx
\]

\[= \frac{1}{n+1} \]

And:

\[
\lim_{N \to \infty} P(n+1|n) = \frac{n+1}{n+2}
\]

Laplace’s Law of Succession

• If we’ve seen 10 heads, the probability that the next toss will be heads is \((10 + 1)/(10 + 2) = 11/12 \) (cf. MLE)

• Laplace’s Law was ridiculed even at the time, and has been at the center of the frequentist/Baysian controversy ever since

• The sun has risen every day for the last 5,000 years. The probability that it won’t rise tomorrow is:

\[
P(\text{no sun}) = 1 - P(\text{sun})
\]

\[= 1 - \frac{5,000 \times 365.25 + 1}{5,000 \times 365.25 + 2}
\]

\[= 1 - 1,826,252
\]

Laplace’s Law of Succession

• If we pick dice instead of coins, then we can generalize this to estimating multinomial probabilities (de Morgan):

\[P(w_1, \ldots, w_n) = \frac{C(w_1, \ldots, w_n) + 1}{N + B} \]

• For zero counts, this gives a probability of \(\frac{1}{N+B} \), so is an improvement over MLE

• But, it depends on knowing how many things we didn’t see (to calculate \(B \)), and...

• generally the number of unseen \(n \)-grams \(B \) is much larger than the size of the corpus \(N \), so most of the probability mass gets assigned to unseen events!

Laplace’s Law of Succession

• The probability that a 10-year-old will be alive next year is

\[11/12 \approx 0.92 \], but the probability that a 70-year-old will be alive is

\[71/72 \approx 0.99 \]

• If cold fusion is achieved in the lab once, the probability that will be achieved when the experiment is repeated exactly is 2/3.

• Cold fusion has never been achieved in the lab, so the probability that will be achieved on the first try is 1/2.

• These are all misapplications of Laplace’s Law!
Laplace’s Law of Succession

- The Brown corpus is 1,170,811 words long
- It includes 53,849 different word types, so the number of possible bigram types is $53,849 \times 53,849 = 2,899,714,801$
- Only 450,852 bigram types are actually observed, so the total probability mass assigned to unseen bigrams is:

$$P(\text{unseen}) = \frac{0 + 1}{1,170,811 + 2,899,714,801} \times (2,899,714,801 - 450,852) = 0.9994$$

- The best we can say is that Laplace probability estimates increase monotonically with observed frequency

Laplace’s Law of Succession

- Laplace’s law depends on the assumption of a uniform prior distribution over models
- But, what about Zipf’s law?
 - A more general prior is the Dirichlet distribution:
 - includes the uniform distribution as a special case
 - also includes lumpy power law distributions
 - conjugate prior for multinomial distribution

Lidstone’s Law of Succession

- A more general alternative based on a Dirichlet prior, proposed by Hardy (1882) and Lidstone (1920):

$$P(w_1, \ldots, w_n) = \frac{C(w_1, \ldots, w_n) + \lambda}{N + B\lambda}$$

- Johnson (1932) showed that if we set $\mu = N/(N + B\lambda)$, then we can rewrite this as:

$$P(w_1, \ldots, w_n) = \mu \frac{C(w_1, \ldots, w_n)}{N} + (1 - \mu) \frac{1}{B}$$

- This is a linear interpretation between the ML and uniform estimates, with parameter μ representing our relative confidence in the two estimates

Lidstone’s Law of Succession

- What value of λ should we use?
- A common guess is $\lambda = 1/2$ (known as the Jeffreys-Perks Law, the Krichevsky-Trofimov estimator, or Expected Likelihood Estimation)
- Another good one is $\lambda = 1/B$ (Schurmann-Grassberger Law)
- Useful values vary widely, so λ could be estimated using held-out data
- Still suffers from the general problem that for a small sample, the prior determines the solution (nuisance parameters, hyperparameters)
Cross-validation methods

- Divide training data into two parts \(a \) and \(b \)
- Suppose an \(n \)-gram \(w \) occurs \(r \) times in part \(a \)
- Let \(N_a^r \) be the total number of \(n \)-grams that occurred \(r \) times in part \(a \), and \(T_b^r \) be the total number of times an \(n \)-gram which occurred \(r \) times in part \(a \) occurs in part \(b \)
- Held out estimation:
 \[
P(w) = \frac{T_b^r}{N_a^r N}
\]
- Deleted interpolation:
 \[
P(w) = \frac{T_b^r + T_a^r}{N(N_a^r + N_b^r)}
\]

Good-Turing theorem

- Another approach to the problem was taken by Alan Turing and I.J. Good at Bletchley Park (Good 1953)
- Resurrected and simplified by William Gale (AT&T) and colleagues in 1991
- Used in population biology catch-and-release studies to estimate the number of animals you didn’t see
- Applied to language modeling by IBM speech group
- Related to leave one cross validation