Parameter estimation

- Maximum likelihood (ML) estimates do very badly when faced with sparse data:

\[\hat{\theta} = \arg\max_{\theta} P(c|\theta) \]

- Maximum a posteriori (MAP) estimates can improve on that by using prior knowledge:

\[\hat{\theta} = \arg\max_{\theta} P(\theta) P(c|\theta) \]

- In general, specifying a prior distribution is hard

- Conjugate priors, MCMC estimation
Parameter estimation

- Uniform prior \rightarrow Laplace’s Law

$$P(x) = \frac{C(x) + 1}{N + B}$$

- Dirichlet prior \rightarrow Lidstone’s Law

$$P(x) = \frac{C(x) + B\lambda}{N + \lambda}$$

- When data is sparse, the choice of a prior determines the solution (nuisance parameters)
Cross-validation methods

- Divide training data into two parts a and b
- Suppose an n-gram w occurs r times in part a
- Let N_r^a be the total number of n-grams that occurred r times in part a, and T_r^b be the total number of times an n-gram which occurred r times in part a occurs in part b
- Held out estimation:

 \[P(w) = \frac{T_r^b}{N_r^a N} \]

- Deleted interpolation:

 \[P(w) = \frac{T_r^b + T_r^a}{N(N_r^a + N_r^b)} \]
Good-Turing theorem

- Another approach to the problem was taken by Alan Turing and I.J. Good at Bletchley Park (Good 1953)

- Resurrected and simplified by William Gale (AT&T) and colleagues in 1991

- Used in population biology to estimate the number of animals you didn’t see

- Applied to language modeling by IBM speech group

- Related to leave one cross validation
Good-Turing theorem

- Suppose you have a bunch of n-grams $\alpha_1, \ldots, \alpha_s$, which appear with true probability p_1, \ldots, p_s. Take an arbitrary n-gram α_i, which occurs r times in a training corpus.

- Find p_i:

$$E[p_i|C(\alpha_i) = r] = \sum_j P(i = j|C(\alpha_i) = r)p_j$$

where:

$$P(i = j|C(\alpha_i) = r) = \frac{P(C(\alpha_j) = r)}{\sum_k P(C(\alpha_k) = r)}$$

$$= \frac{\binom{N}{r} p_j^r (1 - p_j)^{N-r}}{\sum_k \binom{N}{r} p_k^r (1 - p_k)^{N-r}}$$

$$= \frac{p_j^r (1 - p_j)^{N-r}}{\sum_k p_k^r (1 - p_k)^{N-r}}$$
Good-Turing theorem

- Substituting, we get:

\[
E[p_i|C(\alpha_i) = r] = \sum_j p_j \frac{p_j^r (1 - p_j)^{N-r}}{\sum_k p_k^r (1 - p_k)^{N-r}}
= \frac{\sum_j p_j^{r+1} (1 - p_j)^{N-r}}{\sum_k p_k^r (1 - p_k)^{N-r}}
\]

- Now consider \(E[N_r] \), the expected number of \(n \)-grams which occur exactly \(N_r \) times in \(N \) words:

\[
E[N_r] = \sum_j P(C(\alpha_j) = r)
= \sum_j \binom{N}{r} p_j^r (1 - p_j)^{N-r}
\]
Substituting again, we get:

\[
E[p_i|C(\alpha_i) = r] = \frac{E[N_{r+1}]/\binom{N+1}{r+1}}{E[N_r]/\binom{N}{r}}
\]

\[
= \frac{\binom{N}{r} E[N_{r+1}]}{\binom{N+1}{r+1} E[N_r]}
\]

\[
= \left(\frac{r + 1}{N + 1} \right) \left(\frac{E[N_{r+1}]}{E[N_r]} \right)
\]

If that's the expected value of \(p_i \), then expected frequency \(r^* \) is:

\[
r^* = N E[p_i|C(\alpha_i) = r]
\]

\[
= \left(\frac{r + 1}{1 + 1/N} \right) \left(\frac{E[N_{r+1}]}{E[N_r]} \right)
\]
Good-Turing theorem

- When two independent marginally binomial samples $B_1(N; p_1, \ldots, p_s)$ and $B_2(N; p_1, \ldots, p_s)$ are drawn, the expected frequency r^* in the sample B_2 of types occurring r times in B_1 is:

$$r^* = \left(\frac{r + 1}{1 + 1/N} \right) \left(\frac{E[N_{r+1}|B(N+1;p_1,\ldots,p_s)]}{E[N_r|B(N;p_1,\ldots,p_s)]} \right)$$

and when N is sufficiently large:

$$r^* \approx (r + 1) \frac{E[N_{r+1}|B(N;p_1,\ldots,p_s)]}{E[N_r|B(N;p_1,\ldots,p_s)]}$$

which can be approximated as:

$$r^* \approx (r + 1) \frac{N_{r+1}}{N_r}$$
Good-Turing smoothing

- We’d like to estimate the adjusted counts using:

\[r^* = (r + 1) \frac{N_{r+1}}{N_r} \]

but this will be wildly inaccurate for larger values of \(r \)

- We can fit a function \(S \) to \(N_r \) and use those values (Simple Good-Turing Smoothing):

\[r^* = (r + 1) \frac{S(N_{r+1})}{S(N_r)} \]

- The total probability assigned to unseen objects is \(N_1 / N \) (for the Brown corpus example, \(335,105 / 450,852 = 0.74 \))
Good-Turing smoothing

- Example from AP newswire corpus:

<table>
<thead>
<tr>
<th>r</th>
<th>N_r</th>
<th>r^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>160,519,590,316</td>
<td>0.0000128</td>
</tr>
<tr>
<td>1</td>
<td>2,053,146</td>
<td>0.446</td>
</tr>
<tr>
<td>2</td>
<td>458,136</td>
<td>1.26</td>
</tr>
<tr>
<td>3</td>
<td>191,809</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>107,522</td>
<td>3.25</td>
</tr>
<tr>
<td>5</td>
<td>69,883</td>
<td>...</td>
</tr>
</tbody>
</table>
Good-Turing smoothing

- Example from AP newswire corpus:

- In R:

```r
> n <- c(160519590316, 2053146, 458136, 191809, 107522, 69883)
> r <- 0:4
> (r+1)*(n[r+2]/n[r+1])
[1] 1.279063e-05 4.462771e-01 1.256018e+00 2.242272e+00
[5] 3.249707e+00
```
Smoothing methods

<table>
<thead>
<tr>
<th>$r = f_{\text{MLE}}$</th>
<th>f_{emp}</th>
<th>f_{Lap}</th>
<th>f_{del}</th>
<th>f_{SGT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000027</td>
<td>0.000137</td>
<td>0.000037</td>
<td>0.000027</td>
</tr>
<tr>
<td>1</td>
<td>0.448</td>
<td>0.000274</td>
<td>0.396</td>
<td>0.446</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>0.000411</td>
<td>1.24</td>
<td>1.26</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
<td>0.000548</td>
<td>2.23</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>3.23</td>
<td>0.000685</td>
<td>3.22</td>
<td>3.24</td>
</tr>
<tr>
<td>5</td>
<td>4.21</td>
<td>0.000822</td>
<td>4.22</td>
<td>4.22</td>
</tr>
<tr>
<td>6</td>
<td>5.23</td>
<td>0.000959</td>
<td>5.20</td>
<td>5.19</td>
</tr>
<tr>
<td>7</td>
<td>6.21</td>
<td>0.00109</td>
<td>6.21</td>
<td>6.21</td>
</tr>
</tbody>
</table>
Combining estimators

- A complementary approach is to use ML estimators when we think they’ll be accurate, and something else when we are suspicious of them.

- For example, we could use MLE estimates for large r and GT smoothing for small r.

- Another possibility is to combine different kinds of history equivalence classes:

$$P(w_3|w_1, w_2) = \lambda_1 P_1(w_3) + \lambda_2 P_2(w_3|w_2) + \lambda_3 P_3(w_3|w_1, w_2)$$

where the weights λ_i must be non-negative and sum to one.

- This is linear interpolation or a mixture model that combines unigram, bigram, and trigram models (deletion interpolation).
Backoff models

- Deleted interpolation always uses some information from each model

- Katz’s (1987) backoff model uses the best model available:

 \[
 P(w_3|w_1, w_2) = \begin{cases}
 (1 - d(w_1, w_2, w_3)) P_3(w_3|w_1, w_2) & \text{if } C(w_1, w_2, w_3) \geq 1 \\
 \alpha(w_1, w_2, w_3) P(w_3|w_2) & \text{otherwise}
 \end{cases}
 \]

- The discount \(d(w_1, w_2, w_3)\) and normalizing factor \(\alpha(w_1, w_2, w_3)\) are required to make sure this is a proper distribution

- Discounts can be calculated using Good-Turing frequency estimates, or by other methods
Many other methods, some ad hoc but useful ($0 \rightarrow \epsilon$)

Most depend on knowing the number of bins (SGT is a partial exception), and can’t distinguish between accidental and ‘structural’ zeros

Chen and Goodman (1996) carried out a large-scale empirical comparison of smoothing methods, and found that Simple Good-Turing smoothing worked best with lots of data, otherwise modified Kneser-Ney backoff smoothing