Probabilistic classifiers

- Bayes Decision Rule minimizes expected error:
 \[\hat{c} = \arg \max_{c \in C} P(c|x) \]

- We use a *generative* model \(P(x, c) \) plus Bayes’ Theorem:
 \[
 \hat{c} = \arg \max_{c \in C} P(c|x) \\
 = \arg \max_{c \in C} \frac{P(x|c) P(c)}{P(x)} \\
 = \arg \max_{c \in C} P(x|c) P(c) \\
 = \arg \max_{c \in C} P(x, c)
 \]

Naive Bayes classifiers

- Naive Bayes classifiers work well even when features aren’t independent

- But, the “naive Bayes” assumption is clearly wrong – can we do without it?

- If we know all the \(P(x_i|c) \)'s but not their dependencies, is it possible to construct \(P(x|c) \)?

- Yes, in fact, there are lots of ways to do it: the problem is *ill-posed*

Naive Bayes classifiers

- We can split \(P(x, c) \) into two parts: the class prior \(P(c) \), and a likelihood \(P(x|c) \)

- It’s easy to get reasonable estimates of \(P(c) \) from training data, but not \(P(x|c) \)

- Instead, we assume that the individual features in \(x \) are independent, so:
 \[
 P(x|c) = \prod_{i} P(x_i|c)
 \]

- Now the decision rule becomes:
 \[
 \hat{c} = \arg \max_{c \in C} P(c) \prod_{i} P(x_i|c)
 \]

Maximum Entropy

- This is a general problem: how do we pick a probability distribution given possibly incomplete information?

- Our probability estimates should reflect what we know *and what we don’t know*: ignorance is preferable to error

- Shannon’s entropy is a measure of ignorance

- Jaynes (1957): “The least informative probability distribution maximizes the entropy \(S \) subject to known constraints.”
Principle of Insufficient Reason

- Remember Bernoulli’s *Principle of Insufficient Reason*: if we have \(n \) outcomes and don’t know anything else, then say each outcome has a probability of \(\frac{1}{n} \).

- Suppose we have a coin (with two sides). All we know is:

\[
P(h) + P(t) = 1
\]

- The entropy \(H \) is:

\[
H = -(P(h) \log P(h) + P(t) \log P(t))
\]

\[
= -(P(h) \log P(h) + (1 - P(h)) \log(1 - P(h)))
\]

- If \(P(h) = 0.5 \), then \(H = \log_2 1 = 1 \) bit

Wallis derivation

- Why maximize entropy? Shannon and Jaynes show that other measures run into inconsistencies.

- Another argument (what Jaynes calls the “Wallis derivation”) based on a procedure for ‘fairly’ constructing a distribution given some constraints

- Divide the available probability mass into \(n \) quanta, each of magnitude \(\delta = \frac{1}{n} \), and randomly assign them to the \(m \) possible outcomes.

- If outcome \(i \) gets \(n_i \) quanta, then we say its probability is

\[
p_i = n_i \delta = \frac{n_i}{n}
\]

- If the resulting distribution fits the known constraints, we’re done. Otherwise, we reject it and try again.

- For this to give good results, \(n \) has to be much larger than \(m \), and we might need a lot of attempts before we get a distribution that fits the constraints

- So, instead, let’s find the distribution which is most likely to come up

- The probability of any particular assignment is given by the multinomial distribution:

\[
P(n_1, \ldots, n_m) = \binom{n}{n_1, \ldots, n_m} m^{-n} = \frac{n!}{n_1! \cdots n_m!} m^{-n}
\]

- So, the assignment which we are most likely to come up with using this fair procedure is the one that maximizes:

\[
W = \frac{n!}{n_1! \cdots n_m!}
\]
Wallis derivation

- Instead of maximizing W, we could equivalently maximize a monotonic increasing function of W, like, oh, say, $\frac{1}{n} \log W$:

\[
\frac{1}{n} \log W = \frac{1}{n} \log \left(\frac{n!}{n_1! \cdots n_m!} \right) \\
= \frac{1}{n} \log \left(\frac{n!}{np_1! \cdots np_m!} \right) \\
= \frac{1}{n} \left(\log n! - \sum_i \log np_i! \right)
\]

Wallis derivation

- Now, we can bring in Stirling’s approximation:

\[
\log n! = \sum_{k=1}^{n} \log k \\
\approx \int_1^n \log x \, dx \\
= n \log n - n + 1 \\
\approx n \log n - n
\]

Wallis derivation

- Put them together and we get:

\[
\frac{1}{n} \log W = \frac{1}{n} \left(n \log n - n - \sum_i (np_i \log np_i - np_i) \right) \\
= \log n - \sum_i p_i \log np_i \\
= \log n - \left(\sum_i p_i \log n + \sum_i p_i \log p_i \right) \\
= \log n - \left(\sum_i p_i \log n + \sum_i p_i \log p_i \right) \\
= (1 - \sum_i p_i) \log n - \sum_i p_i \log p_i \\
= - \sum_i p_i \log p_i
\]

A simple example

- Suppose a fast-food restaurant sells $1.00 burgers and $2.00 chicken sandwiches. Customers, on average, pay $1.75 for lunch. What’s the probability that someone ordered a burger?

- We know:

\[
P(b) + P(c) = 1 \\
(\$1.00 \times P(b)) + (\$2.00 \times P(c)) = \$1.75
\]

- So, we can conclude:

\[
(\$1.00 \times P(b)) + (\$2.00 \times (1 - P(b))) = \$1.75 \\
P(b) = \$0.25
\]
A simple example

- Now suppose this fast-food restaurant also sells $3.00 fish sandwiches. If customers pay $1.75 for lunch on average, what’s the probability that someone ordered a burger?

- We know:

\[P(b) + P(c) + P(f) = 1 \]

\[($1.00 \times P(b)) + ($2.00 \times P(c)) + ($3.00 \times P(f)) = $1.75 \]

- Now we have three unknown probabilities and only two constraints.

- Out of the many possible ways of assigning probabilities, we want to find the one that maximizes the entropy.

A simple example

- We can use the constraints to eliminate two of the unknowns:

\[P(c) = -2P(b) + 1.25 \]

\[P(f) = P(b) - 0.25 \]

- Now we can apply MaxEnt:

\[H = -P(b) \log P(b) - (-2P(b) + 1.25) \log(-2P(b) + 1.25) - (P(b) - 0.25) \log(P(b) - 0.25) \]

A simple example

- To find the value of \(P(b) \) which maximizes \(H \), we take the derivative of \(H \):

\[\frac{d}{dP(b)} H = -\log(P(b)) + 2 \log(-2P(b) + 1.25) - \log(P(b) - 0.25) \]

and solve:

\[-\log(P(b)) + 2 \log(-2P(b) + 1.25) - \log(P(b) - 0.25) = 0 \]

\[P(b) = 0.466 \]
Maximum entropy

- Simple problems can be solved analytically, but to replace naive Bayes we need a more general solution
- We have our usual feature vector \(x \), and we know the value of feature \(x_i \) for every instance in the training set
- From this, we can estimate the expected value \(\hat{E}[x_i] \)
- This gives us a set of constraints:
 \[
 \sum P(x) = 1
 \]
 for each \(x_i \):
 \[
 \sum P(x) x_i = \hat{E}[x_i]
 \]
- Of the distributions which satisfy these constraints, we need to find the one that maximizes the entropy \(H(P) \)

Constrained optimization

- This is a constrained optimization problem: maximize a function given a set of constraints
- First, we restate the constraints:
 \[
 0 = \sum P(x_i) x_i - \hat{E}[x_i]
 \]
 \[
 0 = \sum P(x) - 1
 \]
- Next, we introduce the Lagrangian function:
 \[
 \mathcal{L}(P, \lambda, \gamma) = - \sum P(x) \log P(x) - \sum \lambda_i \left(\sum P(x) x_i - \hat{E}[x_i] \right) - \gamma \left(\sum P(x) - 1 \right)
 \]

Constrained optimization

- This now gives us an unconstrained optimization problem, which we can solve by finding the \(P \) where:
 \[
 \nabla \mathcal{L}(P, \lambda, \gamma) = 0
 \]
- So, we start here:
 \[
 0 = \frac{\partial}{\partial P} \mathcal{L}(P, \lambda, \gamma)
 \]
 \[
 = -(1 + \log P(x)) - \sum \lambda_i x_i - \gamma
 \]
 \[
 \log P(x) = -\gamma - 1 - \sum \lambda_i x_i
 \]
 \[
 P(x) = \exp (\gamma - 1) \exp \left(\sum \lambda_i x_i \right)
 \]

Constrained optimization

- Recall that:
 \[
 \sum_x P(x) = 1
 \]
 \[
 = \sum_x \exp (\gamma - 1) \exp \left(\sum \lambda_i x_i \right)
 \]
 \[
 \exp (\gamma - 1) = \left(\sum_x \exp \left(\sum \lambda_i x_i \right) \right)^{-1}
 \]
Constrained optimization

- Finally, substituting in $P(x)$, we get:

$$P(x) = \frac{1}{Z} \exp \left(\sum_i \lambda_i x_i \right)$$

$$Z = \sum_x \exp \left(\sum_i \lambda_i x_i \right)$$

- Parameters λ_i are chosen so that:

$$\sum_x P(x) x_i = \hat{E}[x_i]$$

- Z is sometimes called the partition function

MaxEnt classifiers

- To build a MaxEnt classifier, we need to construct a function f_i from documents to features, and then estimate λ_i for each feature i (more on that later)

- Then, to find the probability of a new document d having a class label c, we evaluate:

$$P(d, c) = \frac{\exp \sum_i \lambda_i f_i(d, c)}{\sum_{d, c} \exp \sum_i \lambda_i f_i(d, c)}$$

- Now we have a problem: the sum in the denominator ranges over all possible documents and classes

- One option is Monte Carlo simulation: randomly generate lots of documents according to our distribution and use them to estimate Z

MaxEnt classifiers

- The model can be constrained by anything whose expected value is interesting (e.g. presence of a word, normalized frequency of a word)

- To apply this to classification, we need the joint distribution $P(x, c)$. So, features need to be a conjunction of a contextual predicate and a class

- We can account for the class prior $P(c)$ by including the class itself as a feature

- Feature selection can be done in the usual way.

- Setting all features for a baseline class to zero will further reduce the number of features

- Instead, we can use our training data to compute an 'empirical' document distribution $P(d)$.

- Instead of these constraints:

$$\sum_d P(d, c) f_i(d, c) = \sum_d \hat{P}(d, c) f_i(d, c)$$

we can use these constraints:

$$\sum_d \hat{P}(d) P(c|d) f_i(d, c) = \sum_d \hat{P}(d, c) f_i(d, c)$$

- This gives us a conditional maximum entropy model:

$$P(c|d) = \frac{\exp \sum_i \lambda_i f_i(d, c)}{\sum_c \exp \sum_i \lambda_i f_i(d, c)}$$
MaxEnt classifiers

- If we are only interested in classification, then for each document we only need to find:
 \[
 \hat{c} = \arg\max_{c \in C} \sum_i \lambda_i f_i(d, c)
 \]

- This (obviously) gives us a linear decision boundary

- Since we’re not summing log probabilities, there’s no clear bias for longer or shorter documents

- Also known as log-linear, Gibbs, exponential, and multinomial logit models

- Other constraints yield different distributions