Maximum entropy

- We construct a set of constraints from the training data *(sufficient statistics)*:

\[
\mathbb{E}_p[f_i] = \mathbb{E}_\tilde{p}[f_i]
\]

\[
\sum_{x,w} \tilde{p}(x,w) f_i(x,w) = \sum_{x,w} \tilde{p}(w) p(x|w) f_i(x,w)
\]

- Satisfying these constraints while maximizing the entropy gives us the conditional maximum entropy model:

\[
p(x|w; \lambda) = \frac{\exp \sum_i \lambda_i f_i(x,w)}{\sum_z \exp \sum_i \lambda_i f_i(z,w)}
\]

Parameter estimation

- To find particular values of \(\lambda \) given particular constraints, we need to maximize the log likelihood of the training data:

\[
L(\lambda) = \sum_{x,w} \tilde{p}(x,w) \log p(x|w; \lambda)
\]

- We can use the gradient of the log likelihood to iteratively update our best guess for \(\lambda \):

\[
\frac{\partial L(\lambda)}{\partial \lambda_i} = \mathbb{E}_\tilde{p}[f_i] - \mathbb{E}_p[f_i]
\]

- We continue updating \(\lambda \) until the gradient stops getting smaller

Gaussian prior

- Another option is to use MAP estimation:

\[
\lambda^* = \arg \max_\lambda p(x|w; \lambda) p(\lambda)
\]

- The prior \(p(\lambda) \) is the probability of a particular parameter vector independent from the training data

- MLE implicitly assumes a uniform prior distribution of parameters

- A Gaussian prior with \(\mu = 0 \) will tend to prefer more uniform models

Gaussian prior

- If \(L(\lambda) \) is the log likelihood we use for ML estimation, we can construct a penalized likelihood:

\[
L'(\lambda) = L(\lambda) + \sum_i \log \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{\lambda_i}{2\sigma^2} \right)
\]

\[
= L(\lambda) - \sum_i \frac{\lambda_i^2}{2\sigma^2} + C
\]

- And the gradient \(G' \) is:

\[
G'(\lambda) = G(\lambda) - \sum_i \frac{\lambda_i}{\sigma^2}
\]
MaxEnt models

- MaxEnt models can be applied to any problem with dubious independence assumptions

- For example, PCFGs:

 \[p(t) = \prod_i p(r_i(t)) \]

 could be recast as:

 \[p(t) = \frac{\exp \sum_i \lambda_i r_i(t)}{\sum_{t'} \exp \sum_i \lambda_i r_i(t')} \]

- The requires summing over all trees, so for disambiguation a conditional model would be more practical

- This can be extended to grammatical formalisms beyond CFGs (e.g., DCGs, HPSG)
MaxEnt models

- Tagging:

\[
p(t_1 \ldots t_n|w_1 \ldots w_n) = \frac{p(w_1 \ldots w_n|t_1 \ldots t_n)p(t_1 \ldots t_n)}{p(w_1 \ldots w_n)} \propto p(w_1 \ldots w_n|t_1 \ldots t_n)p(t_1 \ldots t_n) \approx \prod_i p(w_i|t_i)p(t_i|t_{i-1})
\]

- A Maximum Entropy Markov Model reduces the independence assumptions:

\[
p(t_i|w_i, t_{i-1}) = \frac{\exp \sum_j \lambda_i f_i(w_i, t_{i-1}, t_i)}{\sum_{t'} \exp \sum_j \lambda_i f_i(w_i, t_{i-1}, t')}
\]

Conditional Random Fields

- MEMM’s still make the Markov assumption:

\[
p(t_1 \ldots t_n|w_1 \ldots w_n) = \prod_i p(t_i|w_i, t_{i-1})
\]

- Label bias problem: all probability going into state is passed on to successors, and states with fewer outgoing transitions will be preferred to those with more

- Lafferty, McCallum, and Pereira (2001) eliminate that too: Conditional Random Fields

\[
p(t_1 \ldots t_n|w_1 \ldots w_n) = \frac{1}{Z(w_1 \ldots w_n)} \exp \sum_i \lambda_i f_i(w_1 \ldots w_n, t_1 \ldots t_n)
\]

Minimum Divergence models

- The maximum entropy principle says that a uniform prior best represents total ignorance

- What if we’re not totally ignorant?

- A generalization of MaxEnt models (MEMD) minimizes the KL divergence \(D(p||q)\) between the empirical distribution and some prior distribution \(q\):

\[
p(x|w; \lambda) = \frac{q(x|w) \exp \sum_i \lambda_i f_i(x, w)}{\sum_z q(z|w) \exp \sum_i \lambda_i f_i(z, w)}
\]

- For example, this can be an efficient way of combining local and non-local features in language modeling

<table>
<thead>
<tr>
<th></th>
<th>error</th>
<th>OOV error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>5.69</td>
<td>45.99</td>
</tr>
<tr>
<td>MEMM</td>
<td>6.37</td>
<td>54.61</td>
</tr>
<tr>
<td>CRF</td>
<td>5.55</td>
<td>48.05</td>
</tr>
<tr>
<td>MEMM+</td>
<td>4.81</td>
<td>26.99</td>
</tr>
<tr>
<td>CRF+</td>
<td>4.27</td>
<td>23.76</td>
</tr>
</tbody>
</table>
Committee machines

Committee machines (or ensemble machines) combine the predictions of more than one classifier (Nilsson 1965).

Divide and conquer algorithms

Like real committees, committee machines depend on the members being:
 - reasonably accurate (better than guessing)
 - diverse (errors are uncorrelated)

Majority vote

Suppose we have L classifiers, each with an error rate of $p < 0.5$

If the errors are uncorrelated, then the error rate of the committee is given by the c.d.f. of the binomial distribution:

$$P(X > L/2) = \sum_{x=L/2}^{L} \binom{n}{x} p^x (1-p)^{n-x}$$

For example, if $L = 21$ and $p = 0.3$, the overall error rate is 0.026

If errors are not independent, then the overall error rate may be worse than predicted

If $p > 0.5$, then the committee will be worse than any individual member

<table>
<thead>
<tr>
<th>Majority vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNLL 2003 shared task results</td>
</tr>
<tr>
<td>precision</td>
</tr>
<tr>
<td>[FIJZ03]</td>
</tr>
<tr>
<td>[CN03]</td>
</tr>
<tr>
<td>[KSNM03]</td>
</tr>
<tr>
<td>[ZJ03]</td>
</tr>
<tr>
<td>[CMP03b]</td>
</tr>
<tr>
<td>[CC03]</td>
</tr>
<tr>
<td>[MMP03]</td>
</tr>
<tr>
<td>[CMP03a]</td>
</tr>
<tr>
<td>[ML03]</td>
</tr>
<tr>
<td>[BON03]</td>
</tr>
<tr>
<td>[MLP03]</td>
</tr>
<tr>
<td>[WNC03]</td>
</tr>
<tr>
<td>[WP03]</td>
</tr>
<tr>
<td>[HV03]</td>
</tr>
<tr>
<td>[DD03]</td>
</tr>
<tr>
<td>[Ham03]</td>
</tr>
<tr>
<td>baseline</td>
</tr>
</tbody>
</table>

Majority vote

Sets of five individual classifiers were combined, with output selected by majority vote

Best committee: [FIJZ03]+[CN03]+[KSNM03]+[ML03]+[WP03]

Majority vote gives $F = 90.3$ (vs. $F = 88.76$ for best individual system)

Notice that the best combination doesn’t use the highest-scoring individual classifiers
Majority vote

- Weighted majority scales votes by classifier’s accuracy
- Weights can be set by one pass through training data, decreasing weights of classifiers when they make a mistake
- Bayesian voting averages all hypothesis weighted by their posterior probability:
 \[p(c|x, T) = \sum h(x) p(h|T) \]
 where:
 \[p(h|T) \propto p(T|h) p(h) \]
- A meta-classifier can be used to map a set of individual answers and/or the test instance into a single aggregate classifier

Committee machines

- Why do committee machines work?
 - Statistical error: more than one hypothesis fits the training data equally well
 - Computational error: learning algorithm finds a locally optimal hypothesis
 - Representational error: hypothesis space does not include the target concept
 - Committee machines can reduce or eliminate these problems

Generating diversity

- Take C4.5 as an example
 - Statistical error: Large decision trees require a lot of training data
 - Computational error: C4.5 uses a greedy feature selection strategy
 - Representational error: decision trees divide space into rectangular regions

- Given training data and a learning method, how to we generate a diverse committee of classifiers?
 - We can inject randomness into the learning procedure by varying initial conditions or hyperparameters
 - Randomized C4.5 (Dietterich 2000) randomly selects one out of the features with the \(n \) highest gain ratios
 - Normal C4.5 is unstable, since small changes in the training data can make a large difference in the resulting decision tree (and the classification accuracy)
We can also add randomness to the training data (noise)

n-fold cross-validation produces n semi-independent training sets and n semi-independent classifiers

Bagging (Breiman 1996): randomly generate lots (25–200) of training sets by sampling the original training data with replacement (63.2% overlap on average)

Construct classifiers for each training set → majority vote

Reduces variance, so most effective for high variance classifiers

If variance is low, bagging can actually make things worse

Another strategy is to select disjoint subsets of features

Reduces dimensionality for each classifier (important for classifiers like neural nets)

Each resulting classifier must still be fairly accurate, so only works if features can be broken down into independent subsets

Volcano identification (Cherkauer 1996) – 32 neural nets using 8 subsets of 119 features × 4 network sizes

Not especially useful for NLP (but: cotraining)