Maximum entropy

- We construct a set of constraints from the training data (sufficient statistics):

$$E_{\tilde{p}}[f_i] = E_p[f_i]$$

$$\sum_{x,w} \tilde{p}(x,w)f_i(x,w) = \sum_{x,w} \tilde{p}(w)p(x|w)f_i(x,w)$$

- Satisfying these constraints while maximizing the entropy gives us the conditional maximum entropy model:

$$p(x|w; \lambda) = \frac{\exp \sum_i \lambda_i f_i(x,w)}{\sum_z \exp \sum_i \lambda_i f_i(z,w)}$$
Parameter estimation

- To find particular values of λ given particular constraints, we need to maximize the log likelihood of the training data:

$$L(\lambda) = \sum_{x, w} \tilde{p}(x, w) \log p(x|w; \lambda)$$

- We can use the gradient of the log likelihood to iteratively update our best guess for λ:

$$\frac{\partial L(\lambda)}{\partial \lambda_i} = \mathbb{E}_{\tilde{p}}[f_i] - \mathbb{E}_p[f_i]$$

- We continue updating λ until the gradient stops getting smaller
Gaussian prior

- Another option is to use MAP estimation:

\[\lambda^* = \arg\max_{\lambda} p(x|w; \lambda) p(\lambda) \]

- The prior \(p(\lambda) \) is the probability of a particular parameter vector independent from the training data

- MLE implicitly assumes a uniform prior distribution of parameters

- A Gaussian prior with \(\mu = 0 \) will tend to prefer more uniform models
Gaussian prior

- If \(L(\lambda) \) is the log likelihood we use for ML estimation, we can construct a penalized likelihood:

\[
L'(\lambda) = L(\lambda) + \sum_i \log \frac{1}{\sqrt{2\pi} \sigma^2} \exp \left(\frac{-\lambda_i^2}{2\sigma^2} \right)
\]

\[
= L(\lambda) - \sum_i \frac{\lambda_i^2}{2\sigma^2} + C
\]

- And the gradient \(G' \) is:

\[
G'(\lambda) = G(\lambda) - \sum_i \frac{\lambda_i}{\sigma^2}
\]
Gaussian prior

![Bar chart showing Gaussian prior with accuracy values ranging from 88 to 98% across different parameter values.]
Gaussian prior
MaxEnt models

- MaxEnt models can be applied to any problem with dubious independence assumptions

- For example, PCFGs:

\[p(t) = \prod_i p(r_i(t)) \]

could be recast as:

\[p(t) = \frac{\exp \sum_i \lambda_i r_i(t)}{\sum_{t'} \exp \sum_i \lambda_i r_i(t')} \]

- The requires summing over all trees, so for disambiguation a conditional model would be more practical

- This can be extended to grammatical formalisms beyond CFGs (e.g., DCGs, HPSG)
MaxEnt models

• Tagging:

\[p(t_1 \ldots t_n | w_1 \ldots w_n) = \frac{p(w_1 \ldots w_n | t_1 \ldots t_n)p(t_1 \ldots t_n)}{p(w_1 \ldots w_n)} \approx \prod_i p(w_i | t_i) p(t_i | t_{i-1}) \]

A Maximum Entropy Markov Model reduces the independence assumptions:

\[p(t_i | w_i, t_{i-1}) = \frac{\exp \sum \lambda_i f_i(w_i, t_{i-1}, t_i)}{\sum_{t'} \exp \sum \lambda_i f_i(w_i, t_{i-1}, t')} \]
 Conditional Random Fields

• MEMM’s still make the *Markov assumption*:

\[
p(t_1 \ldots t_n | w_1 \ldots w_n) = \prod_i p(t_i|w_i, t_{i-1})
\]

• Label bias problem: all probability going into state is passed on to successors, and states with fewer outgoing transitions will be preferred to those with more

• Lafferty, McCallum, and Pereira (2001) eliminate that too: Conditional Random Fields

\[
p(t_1 \ldots t_n | w_1 \ldots w_n) = \frac{1}{Z(w_1 \ldots w_n)} \exp \sum_i \lambda_i f_i(w_1 \ldots w_n, t_1 \ldots t_n)
\]
Conditional Random Fields

- Notice the partition function: $Z(w_1 \ldots w_n)$

- If our features are like those from typical HMMs, we can use a variant of the forward-backward algorithm to compute feature expectations during training

- Since features don’t need to be independent, we can add morphological features for unknown words

- Some tagging results:

<table>
<thead>
<tr>
<th>Model</th>
<th>error</th>
<th>OOV error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>5.69</td>
<td>45.99</td>
</tr>
<tr>
<td>MEMM</td>
<td>6.37</td>
<td>54.61</td>
</tr>
<tr>
<td>CRF</td>
<td>5.55</td>
<td>48.05</td>
</tr>
<tr>
<td>MEMM+</td>
<td>4.81</td>
<td>26.99</td>
</tr>
<tr>
<td>CRF+</td>
<td>4.27</td>
<td>23.76</td>
</tr>
</tbody>
</table>
Minimum Divergence models

• The maximum entropy principle says that a uniform prior best represents total ignorance

• What if we’re not totally ignorant?

• A generalization of MaxEnt models (MEMD) minimizes the KL divergence $D(p||q)$ between the empirical distribution and some prior distribution q:

$$ p(x|w; \lambda) = \frac{q(x|w) \exp \sum_i \lambda_i f_i(x, w)}{\sum_z q(z|w) \exp \sum_i \lambda_i f_i(z, w)} $$

• For example, this can be an efficient way of combining local and non-local features in language modeling
Committee machines

- Committee machines (or ensemble machines) combine the predictions of more than one classifier (Nilsson 1965)

- Divide and conquer algorithms

- Like real committees, committee machines depend on the members being:
 * reasonably accurate (better than guessing)
 * diverse (errors are uncorrelated)
Majority vote

• Suppose we have L classifiers, each with an error rate of $p < 0.5$

• If the errors are uncorrelated, then the error rate of the committee is given by the c.d.f. of the binomial distribution:

$$p(X > \frac{L}{2}) = \sum_{x=L/2}^{L} \binom{n}{x} p^x (1 - p)^{n-x}$$

• For example, if $L = 21$ and $p = 0.3$, the overall error rate is 0.026

• If errors are not independent, then the overall error rate may be worse than predicted

• If $p > 0.5$, then the committee will be worse than any individual member
Majority vote

CoNLL 2003 shared task results

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FIJZ03]</td>
<td>88.99%</td>
<td>88.54%</td>
<td>88.76±0.7</td>
</tr>
<tr>
<td>[CN03]</td>
<td>88.12%</td>
<td>88.51%</td>
<td>88.31±0.7</td>
</tr>
<tr>
<td>[KSNM03]</td>
<td>85.93%</td>
<td>86.21%</td>
<td>86.07±0.8</td>
</tr>
<tr>
<td>[ZJ03]</td>
<td>86.13%</td>
<td>84.88%</td>
<td>85.50±0.9</td>
</tr>
<tr>
<td>[CMP03b]</td>
<td>84.05%</td>
<td>85.96%</td>
<td>85.00±0.8</td>
</tr>
<tr>
<td>[CC03]</td>
<td>84.29%</td>
<td>85.50%</td>
<td>84.89±0.9</td>
</tr>
<tr>
<td>[MMP03]</td>
<td>84.45%</td>
<td>84.90%</td>
<td>84.67±1.0</td>
</tr>
<tr>
<td>[CMP03a]</td>
<td>85.81%</td>
<td>82.84%</td>
<td>84.30±0.9</td>
</tr>
<tr>
<td>[ML03]</td>
<td>84.52%</td>
<td>83.55%</td>
<td>84.04±0.9</td>
</tr>
<tr>
<td>[BON03]</td>
<td>84.68%</td>
<td>83.18%</td>
<td>83.92±1.0</td>
</tr>
<tr>
<td>[MLP03]</td>
<td>80.87%</td>
<td>84.21%</td>
<td>82.50±1.0</td>
</tr>
<tr>
<td>[WNC03]</td>
<td>82.02%</td>
<td>81.39%</td>
<td>81.70±0.9</td>
</tr>
<tr>
<td>[WP03]</td>
<td>81.60%</td>
<td>78.05%</td>
<td>79.78±1.0</td>
</tr>
<tr>
<td>[HV03]</td>
<td>76.33%</td>
<td>80.17%</td>
<td>78.20±1.0</td>
</tr>
<tr>
<td>[DD03]</td>
<td>75.84%</td>
<td>78.13%</td>
<td>76.97±1.2</td>
</tr>
<tr>
<td>[Ham03]</td>
<td>69.09%</td>
<td>53.26%</td>
<td>60.15±1.3</td>
</tr>
<tr>
<td>baseline</td>
<td>71.91%</td>
<td>50.90%</td>
<td>59.61±1.2</td>
</tr>
</tbody>
</table>
Majority vote

• Sets of five individual classifiers were combined, with output selected by majority vote

• Best committee: [FIJZ03]+[CN03]+[KSNM03]+[ML03]+[WP03]

• Majority vote gives $F = 90.3$ (vs. $F = 88.76$ for best individual system)

• Notice that the best combination doesn’t use the highest-scoring individual classifiers
Majority vote

- Weighted majority scales votes by classifier’s accuracy

- Weights can be set by one pass through training data, decreasing weights of classifiers when they make a mistake

- Bayesian voting averages all hypothesis weighted by their posterior probability:

\[
p(c|x, T) = \sum h(x) p(h|T)
\]

where:

\[
p(h|T) \propto p(T|h) p(h)
\]

- A meta-classifier can be used to map a set of individual answers and/or the test instance into a single aggregate classifier
Committee machines

- Why do committee machines work?
 - Statistical error: more than one hypothesis fits the training data equally well
 - Computational error: learning algorithm finds a locally optimal hypothesis
 - Representational error: hypothesis space does not include the target concept
 - Committee machines can reduce or eliminate these problems
Committee machines

- Take C4.5 as an example

- Statistical error: Large decision trees require a lot of training data

- Computational error: C4.5 uses a greedy feature selection strategy

- Representational error: decision trees divide space into rectangular regions
Generating diversity

- Given training data and a learning method, how do we generate a diverse committee of classifiers?

- We can inject randomness into the learning procedure by varying initial conditions or hyperparameters.

- Randomized C4.5 (Dietterich 2000) randomly selects one out of the \(n \) features with the highest gain ratios.

- Normal C4.5 is unstable, since small changes in the training data can make a large difference in the resulting decision tree (and the classification accuracy).
Randomized C4.5
Generating diversity

- We can also add randomness to the training data (noise)

- n-fold cross-validation produces n semi-independent training sets and n semi-independent classifiers

- **Bagging** (Breiman 1996): randomly generate lots (25–200) of training sets by sampling the original training data with replacement (63.2% overlap on average)

- Construct classifiers for each training set → majority vote

- Reduces variance, so most effective for high variance classifiers

- If variance is low, bagging can actually make things worse
Generating diversity

• Another strategy is to select disjoint subsets of features

• Reduces dimensionality for each classifier (important for classifiers like neural nets)

• Each resulting classifier must still be fairly accurate, so only works if features can be broken down into independent subsets

• Volcano identification (Cherkauer 1996) – 32 neural nets using 8 subsets of 119 features × 4 network sizes

• Not especially useful for NLP (but: cotraining)