Homework

- Project: CoNLL 2004 shared task

- Homework for next week:
 - Download code and data
 - Modify Erik's baseline script to handle double object constructions (or write your own)
 - Read Manning and Schütze, pp. 597–604

Committee machines

- Committee machines (or ensemble machines) combine the predictions of more than one classifier

- Committee machines depend on the members being reasonably accurate (better than guessing) and diverse (errors are uncorrelated)

- Majority vote and weighted majority are simple ensemble methods

- Committee machines reduce statistical error, computational error, and representational error

Bagging

- Given training data and a learning method, how to we generate a diverse committee of classifiers?

- We can inject randomness into the learning procedure by varying initial conditions or hyperparameters

- Bagging (bootstrap aggregation): randomly generate lots (25–200) of training sets by sampling the original training data with replacement majority vote

- Reduces variance, so most effective for high variance, low bias classifiers

Error-correcting output coding

- Error-correcting output codes are redundant encodings which allow reliable data transmission in the presence of noise

- They let us generate diverse classifiers by manipulating the target function

- Exhaustive codes work for a small number of class (3–10), otherwise random codes perform well on average

- ECOC classification reduces bias and variance

- Can be combined with other methods (e.g., bagging) to reduce error rate even further
Boosting

- Boosting iteratively increases the performance of a weak base learner
- AdaBoost (Adaptive Boosting) constructs a series of classifiers by re-weighting the training data
- Weight for misclassified items are increased and for correctly classified items are decreased
- The training distribution is shifted to emphasize the ‘hard’ cases
- Final result is a majority vote, weighted by accuracy

AdaBoost

- Initialize weights w_i to $1/N$, $i = 1, \ldots, N$
- For $m = 1$ to M
 - fit a classifier $G_m(X)$ to X using weights $w_i^{(m)}$
 - compute training error: $\epsilon_m = \sum w_i^{(m)} I(y_i \neq G_m(x_i))$
 - compute $\alpha_m = \frac{1}{2} \log \frac{1-\epsilon_m}{\epsilon_m}$
 - set new weights:
 $$w_i^{(m+1)} = \frac{w_i^{(m)} \exp[-\alpha_m y_i G_m(x_i)]}{Z_m}, \quad i = 1, \ldots, N$$
- Return
 $$G(x) = \text{sign} \left[\sum_m \alpha_m G_m(x) \right]$$

The training error of G is bounded by:

$$\frac{1}{N} \sum I(y_i \neq G(x_i)) \leq \frac{1}{N} \sum \exp[-y_i \sum_m \alpha_m G_m(x_i)] \leq \exp[-2 \sum_m \gamma_m]$$

where

$$\gamma_m = \frac{1}{2} - \epsilon_m$$

As long as $\gamma_m \leq \frac{1}{2}$, the overall error rate will drop exponentially

AdaBoost

- Weak learners can be very simple (decision stumps)
- AdaBoost performs extremely well, sometimes considered the best black-box learning method
- Why it works so well has been a bit of a mystery, spurring some important theoretical advances
- Extensions to multiclass classifiers and regression
- Demo applet
AdaBoost

- AdaBoost continues to decrease generalization error even after training error is zero
- The margin is a measure of the confidence in a classification:
 \[\text{margin}_G(x, y) = \frac{y \sum \alpha_m G_m(x)}{\sum |\alpha_m|} \]
- Shapire, et al. (1998) show that for any \(\theta > 0 \) the generalization error is at most:
 \[R[G] \leq P[\text{margin}_G(x, y) \leq \theta] + \tilde{O}\left(\sqrt{\frac{d}{N \theta^2}}\right) \]
- This bound doesn’t depend on \(M \), so extra iterations need not increase the generalization error

Exponential loss

- What is AdaBoost really doing?
- Consider an alternative algorithm: forward stagewise additive modeling
 * Initialize \(f_0(x) = 0 \)
 * For \(m = 1 \) to \(M \)
 * Compute
 \[(\alpha_m, \gamma_m) = \arg\min_{\alpha, \gamma} \sum_i L(y_i, f_{m-1}(x_i) + \alpha b(x_i; \gamma_i)) \]
 * Set \(f_m = f_{m-1}(x) + \alpha_m b(x; \gamma_m) \)
- This will construct a function \(f \) which is a sum of basis functions \(b(x; \gamma) \) and minimizes the loss function \(L \)

Exponential loss

- Suppose the basis functions are our weak classifiers \(G_i \), and the loss function is:
 \[L(y, f(x)) = \exp(-y f(x)) \]
- Then, the update becomes:
 \[(\alpha_m, G_m) = \arg\min_{\alpha, G} \sum_i \exp[-y_i (f_{m-1}(x_i) + \alpha G(x_i))] \]
 \[= \arg\min_{\alpha, G} \sum_i w_i \exp(-\alpha y_i G(x_i)) \]
 where
 \[w_i = \exp(-y_i f_{m-1}(x_i)) \]
- To solve this, note that:
 \[\sum_i w_i \exp(-\alpha y_i G(x_i)) = e^{-\alpha} \sum_{y_i = G(x_i)} w_i + e^\alpha \sum_{y_i \neq G(x_i)} w_i \]
 \[= (e^\alpha - e^{-\alpha}) \sum_i w_i I(y_i \neq G(x_i)) + e^{-\alpha} \sum_i w_i \]
- So, minimizing with respect to \(G_m \) gives us:
 \[G_m = \arg\min_G \sum_i w_i I(y_i \neq G(x_i)) \]
- Now if we solve for \(\alpha \), we get (where \(\epsilon_m \) is the weighted training error rate of \(G_m \)):
 \[\alpha_m = \frac{1}{2} \log \frac{1 - \epsilon_m}{\epsilon_m} \]
Exponential loss

- Now we update the f:
 \[f_m(x) = f_{m-1}(x) + \alpha_m G_m(x) \]

- This means the weights on the next round will be:
 \[w_i^{(m+1)} = w_i^{(m)} \exp[-\alpha_m y_i G_m(x_i)] \]

- ...which is AdaBoost!

- So, AdaBoost is a greedy algorithm to construct an additive combination of G's which minimizes the exponential loss:
 \[L(y, f(x)) = \exp(-y f(x)) \]

Interpreting models

- One strength of tree-based classifiers is their simple structure, which makes them easy to interpret

- In data mining applications, we are often more interested in the structure that a classifier discovers in the training data than in the accuracy of the rule itself

- Committee machines are virtually impossible to interpret, even if the base learners are simple

- We can measure the relative importance of a variable by summing the estimated error reduction at each node, averaged over all trees in an ensemble
Boosting

- Boosting is a very powerful method, which reduces bias and variance, produces very lower error rates, and is highly resistant to overtraining.
- Boosting finds an additive collection of basis functions which minimizes the exponential loss (and therefore training error).
- Boosting increase the margin, so generalization improves even after the training error reaches zero.
- Boosting is more closely related to logistic regression and maximum entropy models than to other committee methods.
- There are other things that boosting turns out to be the same as (game theoretic interpretations, etc.).

Self-training

- A variant of the committee machine model can be used to take advantage of unannotated or semi-annotated data.
- Simple self-training uses the output of a classifier as the input to the next round of training (helps a little, but not much).
- If we have more than one classifier, we can improve this:
 + Construct classifiers using training data
 + Classify unannotated examples
 + If enough learners agree on the classification of an example, add it to the training set
 + Repeat.

Committee machines

- Bagging and boosting are the best known committee machine methods, but there are others.
- Twicing (Tukey 1977) fits a model to the data, then fits a model to the errors.
- Stacking (Wolpert 1992) uses leave-one-out cross validation to construct and weight models (jackknife).
- Bumping (Tibshirani and Knight 1999) is like bagging, but uses the best single model rather than averaging all of them.
- Arcing (Breiman 1998) is a hybrid of bagging and boosting.
- Random forests (Breiman 1999) are a collection of trees built using randomly selected subsets of features.

Co-training

- Co-training (Blum and Mitchell 1998) splits features into independent subsets:
 + Train two classifiers using these independent feature sets, to get two independent classifiers A and B.
 + Use A to classify unlabeled data, and collect positive and negative examples with the highest classification confidence.
 + Do the same with B, and add the newly labeled data to the training sample.
 + Repeat.
- Use a combination of A and B as final classifier.
Co-training

- When the independent feature sets satisfy some basic assumptions, co-training can improve a weak initial hypothesis to arbitrary accuracy
- Even when feature sets aren't independent (e.g., randomly selected words in a bag-of-words model), co-training works well
- All these methods can be improved significantly by active learning
- These semi-supervised learning methods allow more efficient use of (expensive, slow) human annotators

Committee machines

- Combinations of classifiers can perform better than any one classifier, so long as:
 - each classifier is more accurate than randomly guessing
 - the errors made by each classifier are uncorrelated
- Various strategies for producing useful committees
- Committee machines reduce variance, and sometimes reduce bias as well
- Some committee methods are related to other classifiers in interesting ways
- Committee methods can also be used to take advantage of unannotated or partially annotated data

Generalization

- What happened to the curse of dimensionality?
- Dimensionality (as number of features) has no clear interpretation for complex modeling procedures
- And what about simplicity? Didn't we say simpler = lower variance?
- How is an ensemble of trees simpler than a single tree?
- How is MaxEnt simpler than Naive Bayes?
- How is MaxEnt+prior simpler than MaxEnt?

Generalization

- Notions like dimensionality and simplicity aren't really what we're interested in
- Dimensionality reduction and simplification are meant to improve generalization – the ability to abstract away from accidental details of a training sample
- A better way to get at that is by restricting capacity
- Deleting features or simplifying models may (or may not) reduce the representational capacity of a model
Generalization

- Take MaxEnt models with a Gaussian prior:
 \[\lambda^* = \arg\max_{\lambda} L(\lambda) - \frac{1}{2\sigma^2} \sum_i \lambda_i^2 \]

- This is equivalent to:
 \[\lambda^* = \arg\max_{\lambda} L(\lambda) \]

 where
 \[\sum_i \lambda_i^2 \leq s^2 \]

- The solution is the point which maximizes \(L \) and falls inside the hypersphere with radius \(s \)

- The prior reduces the capacity of the model, which (empirically) improves generalization