Homework

- Project: CoNLL 2004 shared task

- Homework for this week

- Homework for two weeks from today:
 - Write a program which calculates the probability of each verb sense from the training data
 - Don’t rely on the verb sense tags, though you can use them for debugging
 - Turn in program, plus sense probabilities for exchange,
Committee machines

- AdaBoost is a form of forward stagewise additive regression, minimizing the exponential loss of a model.

- AdaBoost also increases the margin of the training data, reducing generalization error even after training error is zero.

- Self-training and co-training use ensembles of learners to take advantage of under-annotated training data.

- Committee machines generally outperform all but the best single learners, but by any measure are more complex – so what about Occam’s Razor?
Generalization

- What happened to the curse of dimensionality?

- Dimensionality (as number of features) has no clear interpretation for complex modeling procedures

- And what about simplicity? Didn’t we say simpler = lower variance?

- How is an ensemble of trees simpler than a single tree?

- How is MaxEnt simpler than Naive Bayes?

- How is MaxEnt+prior simpler than MaxEnt?
Generalization

- Notions like dimensionality and simplicity aren’t really what we’re interested in.

- Dimensionality reduction and simplification are meant to improve *generalization* – the ability to abstract away from accidental details of a training sample.

- A better way to get at that is by restricting *capacity*.

- Deleting features or simplifying models may (or may not) reduce the representational capacity of a model.
Generalization

• Take MaxEnt models with a Gaussian prior:

\[\lambda^* = \arg \max_{\lambda} L(\lambda) - \frac{1}{2\sigma^2} \sum_{i} \lambda_i^2 \]

• This is equivalent to:

\[\lambda^* = \arg \max_{\lambda} L(\lambda) \]

where

\[\sum_{i} \lambda_i^2 \leq s^2 \]

• The solution is the point which maximizes \(L \) and falls inside the hypersphere with radius \(s \)

• The prior reduces the capacity of the model, which (empirically) improves generalization
Generalization

- The VC dimension of a class of functions $\{f(x, \alpha)\}$ is the largest number of points which can be shattered by members of $\{f(x, \alpha)\}$.

- VC dimension is another way of measuring capacity, and we’ve already seen how this bounds generalization error.

- Given a classifier with a VC dimension of d and N training examples, then if $d \leq N$ we have with probability $1 - \delta$ the error rate is bounded by:

$$
\frac{2}{N} \left(d \log \frac{2eN}{d} + \log \frac{2}{\delta} \right)
$$
Generalization

- What about complex adaptive procedures?

- The winning entry for the 2001 KDD Cup uses a 2–20 features, out of 140,000 (and 1,900 training examples): what’s the dimensionality?

- Generalized Degrees of Freedom (Ye 1998) – randomly perturb target values \(y \) by \(\delta \), and see how the fitted values vary

- Covariance Inflation Criterion (Tibshirani and Knight 1999) – randomly scramble target values \(y \) and see how the fitted values vary

- Both of these methods measure the flexibility of a modeling procedure
Perceptron

- A non-linear model of a neuron used in artificial neural networks (ANNs) combines a set of weighted inputs through a biased summing junction and an activation function.

- The McCulloch-Pitts neuron (McCulloch and Pitts 1943) or perceptron (Rosenblatt 1962) is a particular neural model which uses a linear combination of its inputs:

\[v = w_0 + \sum w_i x_i \]

and whose activation function is the threshold function (aka: hard limiter, signum):

\[y = \begin{cases}
+1 & \text{if } v \geq 0 \\
-1 & \text{otherwise}
\end{cases} \]
Rosenblatt’s perceptron algorithm iteratively updates the weights w to fit a training sample.

- Start with $w = 0$

- Take each training example x_i, and compute:

$$\hat{y}_i = \text{sign}(\sum_j w^j x^j_i) = \text{sign}(w \cdot x_i)$$

- Next update weights (where $0 < \eta \leq 1$ is the learning rate):

$$w \leftarrow w + \eta(y_i - \hat{y}_i)x_i$$

- Repeat until w stops changing
• Small η gives stable weight estimates, large η gives fast adaptation

• If the training data is linearly separable, then this is guaranteed to converge

• If the training data is not linearly separable, then it may cycle infinitely among sub-optimal solutions!

• The perceptron convergence algorithm is a kind of gradient descent to maximize the \textit{functional margin}:

$$\gamma = \min_i y_i (x_i \cdot w)$$
- The functional margin γ is non-negative if the data is separated by the hyperplane w, and the larger γ is, the greater the separation.

- Novikoff (1962): Suppose some weight vector w_0 (where $||w|| = 1$) correctly classifies all examples in the training set with margin γ, and $R = \max_i ||x_i||$. Then the number of corrections made by the perceptron algorithm is at most:

$$\left(\frac{2R}{\gamma}\right)^2$$

- The difficulty of learning a concept depends on the pattern length divided by the margin.
What if the data is not linearly separable? We define a margin slack variable with respect to an example x_i and a target margin γ:

$$\xi_i = \max(0, \gamma - y_i (x_i \cdot w))$$

The slack variable reflects by how much x_i fails to have a margin of γ

Freund and Schapire (1998): If $D = \|\xi\|$, then the number of mistakes made on one pass through the training data is at most:

$$\left(\frac{2(R + D)}{\gamma}\right)^2$$
The perceptron algorithm learns linear boundaries, and so can’t represent many real-world concepts.

In the 1960’s this led to general discouragement, followed by multi-layer perceptrons and more complex ANNs (but these have their own problems).

Alternatively, we could use more powerful learning methods (decision trees, k-nearest neighbor).

Or, we could just not worry about it (naive Bayes, MaxEnt).

Or, we could find a way of converting a non-linearly separable problem into a linearly separable one by mapping between feature spaces.
Suppose the concept we want to learn depends not on individual features but on combinations of features (e.g., XOR, 8).

We could map our original feature space into a larger one which captures these relationships (monomial features):

\[(x_1, x_2) \rightarrow (x_1^2, x_2^2, x_1 x_2)\]

Alas, for an \(n\) dimensional input vector, the number of monomials of degree \(d\) is:

\[
\binom{d + n - 1}{d} = \frac{(d + N - 1)!}{d! (N - 1)!}
\]

But, there is a trick that lets us use these large derived feature spaces without actually computing them.
Perceptron (dual form)

- First we need the dual form of the perceptron algorithm
- The perceptron algorithm works by adding or subtracting misclassified examples from an arbitrary initial weight vector
- When it converges, the weight vector will be:

\[w = \sum_i \alpha_i y_i x_i \]

where \(\alpha_i > 0 \) is the embedding strength of \(x_i \), proportional to the number of times misclassification of \(x_i \) caused the weights to be updated
- Given a fixed training set, the solution can be represented either by \(w \) or by \(\alpha \)
Perceptron (dual form)

• We rewrite the decision rule as:

\[
\hat{y} = \text{sign}(w \cdot x) \\
= \text{sign}\left(\sum \alpha_i y_i x_i \cdot x\right) \\
= \text{sign}\left(\sum \alpha_i y_i (x_i \cdot x)\right)
\]

• And the update of the perceptron algorithm becomes:

If

\[
y_i\left(\sum_{j} \alpha_j y_j (x_j \cdot x_i)\right) \leq 0
\]

then

\[
\alpha_i \leftarrow \alpha_i + \eta
\]
• Notice now that the training data only comes into play via the Gram matrix G:

$$G_{ij} = x_i \cdot x_j$$

• The dot product is one measure of the similarity between x_i and x_j, but there are others.

• In general, we want to define a mapping Φ from our feature space into \mathbb{R}^N, and a kernel function:

$$k(x, x') = \Phi(x) \cdot \Phi(x')$$
Kernel functions

- In the case of an ordered *polynomial kernel*, we have:

\[\Phi : (x_1, x_2) \rightarrow (x_1^2, x_2^2, x_1 x_2, x_2 x_1) \]

and

\[\Phi(x) \cdot \Phi(x') = x_1^2 (x'_1)^2 + x_2^2 + (x'_2)^2 + 2 x_1 x_2 x'_1 x'_2 = (x \cdot x')^2 \]

- For polynomial kernels in general:

\[\Phi_d(x) \cdot \Phi_d(x') = (x \cdot x')^d \]
Kernel functions

- Thus, we can work with a very high dimensional ‘virtual’ space with essentially the same amount of effort as in the original feature space.

- Mercer’s Theorem states that any kernel function which meets certain general conditions can be represented as a dot product in a high dimensional space.

- This leads to the *kernel trick*: any algorithm which uses a dot product can be rewritten to use a Mercer kernel instead.

- A ‘kernelized’ perceptron algorithm can fit a hyperplane to a non-linear mapping of a feature space with little or no extra computational cost.

- But, we still pay a statistical cost for those extra features (there’s no escaping the curse).