Homework

- Project: CoNLL 2004 shared task
- Homework for next week from today:
 - Write a program which calculates the probability of each verb sense from the training data
 - Don’t rely on the verb sense tags, though you can use them for debugging
 - Turn in program, plus sense probabilities for exchange and feel
- Item read chapter 1 of Learning with kernels at http://www.learning-with-kernels.org/

Perceptron

- Rosenblatt’s perceptron algorithm constructs a linear decision boundary (separating hyperplane)
- For each misclassified training example, update weights (primal form):
 \[w \leftarrow w + \eta (y_i - \hat{y}_i)x_i \]
- This is a form of gradient descent to minimize the negative margin of misclassified points:
 \[\hat{w} = \arg\min_w - \sum_{i \in \mathcal{M}} y_i (x_i \cdot w) \]

The functional margin \(\gamma \):

\[\gamma = \min_i y_i (x_i \cdot w) \]

is non-negative if the data is separated by the hyperplane \(w \), and the larger \(\gamma \) is, the greater the separation

Novikoff (1962): Suppose some weight vector \(w_0 \) (where \(||w|| = 1 \)) correctly classifies all examples in the training set with margin \(\gamma \), and

\[R = \max_i ||x_i|| \]. Then the number of corrections made by the perceptron algorithm is at most:

\[\left(\frac{2R}{\gamma} \right)^2 \]

The difficulty of learning a concept depends on the pattern length divided by the margin

The perceptron algorithm suffers from a few serious problems

- If the training data is not separable (i.e., \(\gamma < 0 \)), it will not converge to a solution
- If the margin \(\gamma \) is very small, convergence will be very slow
- When the margin is large, the solution is not unique and will depend on the starting conditions
- The first two problems can be addressed by increasing the dimensionality of the feature space to improve separation
Feature spaces

- For example, we could expand a two dimensional input space to a six-dimensional polynomial feature space:

\[\Phi : (x_1, x_2) \rightarrow (x_1, x_2, x_1 x_2, x_2 x_1, x_1^2, x_2^2) \]

- A separating hyperplane in this feature space corresponds to a 2nd degree polynomial decision boundary in the input space.

- By using the perceptron algorithm in this derived feature space, we can find a non-linear boundary in the input space.

- While increasing the dimensionality generally improves separation, it can also introduce its own problems.

Feature space

- One drawback to this is computational: our feature vectors and weight will get very long in a hurry.

- A solution is to use the dual form of the perceptron algorithm, which represents the decision boundary by the embedding strength of the training examples:

\[w = \sum_i \alpha_i y_i x_i \]

and the decision boundary is:

\[\hat{y} = \text{sign} \left(\sum_i \alpha_i y_i (x_i \cdot x) \right) \]
Kernel functions

- Now the training data only enters into our calculations via dot products \((x_i \cdot x_j)\).
- For certain feature spaces, the dot product can be computed efficiently without actually constructing the complete feature vectors.
- And, it turns out that a broad class of kernel functions \(K(x_i, x_j)\) are dot products in some (possibly \(\infty\)-dimensional) feature space.
- Representing kernel Hilbert spaces (RKHS).
- The dual form of the perceptron algorithm can use any of these kernel functions in place of the dot product:
 \[\hat{y} = \text{sign}(\sum \alpha_i y_i K(x_i, x))\]

Kernel functions

- Other kernel functions are used occasionally, but these are the most important.
- Linear kernels are very useful when feature vectors are sparse (e.g., texts represented as a bag of words).
- Polynomial kernels fit curves.
- RBFs are Gaussian blobs centered on training examples (\(k\) nearest neighbors?)
- Using a kernel function, the inputs need not even be in a vector space (string kernels, tree kernels).
- ‘Kernelizing’ the perceptron can improve performance on inseparable or poorly separated training data, with the risk of overtraining.

Kernel functions

- Linear kernel
 \[K(x_i, x_j) = (x_i \cdot x_j)\]
- Polynomial kernel
 \[K(x_i, x_j) = (x_i \cdot x_j)^d\]
- Radial basis function (RBF) kernel
 \[K(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{\sigma^2}\right)\]
- Kernels are a kind of similarity measure.

Perceptron

- We still don’t have a unique solution from the perceptron algorithm for separable problems.
- We can fix this by imposing a stronger constraint.
- Rather than minimizing the negative margin of misclassified points:
 \[\hat{w} = \arg\min_w \sum_{i \in \mathcal{M}} y_i (x_i \cdot w)\]
 we can instead maximize the functional margin:
 \[\gamma = \min_i y_i (x_i \cdot w)\]
- Recall how increasing the margin improved things with boosting.
Canonical hyperplane

- A problem: many weight vectors represent the same hyperplane, so we can rescale the weights (and increase the functional margin) without changing the classification decisions.
- We define the geometric margin:
 \[\rho = \frac{\gamma}{||w||} \]
 and we say that a separating hyperplane \(w \) is canonical if the functional margin \(\gamma = 1 \).
- For a canonical hyperplane, the distance to the closest data point is \(1/||w|| \).

Optimal margin classifier

- We’ve already seen plenty of evidence that large margins are good.
- Here’s a theoretical bound on the generalization error of a separating hyperplane.
- Suppose \(||w|| \leq \lambda \) and \(||x|| \leq R \) for \(\lambda, R > 0 \), and the margin error \(\nu \) is the fraction of the \(m \) training examples with margin smaller than \(\frac{\rho}{||w||} \) for \(\rho > 0 \). Then, with probability at least \(1 - \delta \), the probability of misclassifying a test example is bounded by:
 \[\nu + \sqrt{\frac{c}{m} \left(\frac{R^2 \lambda^2}{\rho^2} (\log m)^2 + \log \frac{1}{\delta} \right)} \]

Some observations about this:

- This bound suggests we want to find a separating hyperplane that maximizes the margin \(\rho \) without increasing the margin error \(\nu \).
- For a canonical hyperplane, \(\gamma = 1 \) and:
 \[\rho = \frac{1}{||w||} \]

 Thus maximizing \(\rho \) is the same as minimizing \(||w|| \).

- The error is the sum of the margin error \(\nu \) (i.e., training error) and a capacity term (\(\sqrt{\ldots} \)).
- As \(m \) gets large, the capacity term gets small.
- The capacity term gets larger as \(\lambda \) and \(R \) (which are more or less fixed by the training data) increase.
- Increasing the margin \(\rho \) will decrease the capacity term, but increase the margin error.

In other words, we want no points where \(y (w \cdot x) < 1 \).
Optimal margin classifier

- We can frame this as a **quadratic programming** problem:

 \[
 \text{find: } \min_w \frac{1}{2}||w||^2 \\
 \text{such that: } y_i (x_i \cdot w) \geq 1, \text{ for all } i = 1, \ldots, m
 \]

- To solve this, we introduce the Lagrangian:

 \[L(w, \alpha) = \frac{1}{2}||w||^2 - \sum_i \alpha_i (y_i (x_i \cdot w) - 1)\]

 where \(\alpha_i \geq 0\)

- We minimize \(L\) with respect to \(w\) by setting the derivatives to zero, which gives us:

 \[w = \sum_i \alpha_i y_i x_i\]

Optimal margin classifier

- The decision boundary is given by:

 \[\hat{y} = \text{sign}(\sum_i \alpha_i y_i (x_i \cdot x))\]

- At the solution, \(\alpha_i (y_i (x_i \cdot w) - 1) = 0\) for all \(i\)

- So, if \(\alpha_i > 0\), then \(y_i (x_i \cdot w) = 1\) and \(x_i\) is right on the margin

- If \(y_i (x_i \cdot w) > 1\) and \(x_i\) is not on the margin, then \(\alpha_i = 0\)

- Thus, the decision boundary is a linear combination of training points which lie precisely on the margin (**support vectors**). The other training points are irrelevant.

Support vector machines

- With some substitutions and tinkering, we get the dual problem:

 \[
 \text{find: } \max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) \\
 \text{such that: } \alpha_i \geq 0
 \]

- This can be solved using standard convex optimization techniques

- Because this is stated in terms of the dual parameters \(\alpha_i\), it is easily kernelized

- By directly controlling capacity, optimal margin classifiers reduce the dangers of overtraining

- Because most training points don’t lie right on the margin, the dual solution will tend to be sparse

- Optimal margin classifiers improve on the perceptron, but still fail for non-separable problems

- Support Vector Machines (SVM) extend optimal margin classifiers to non-linear decision boundaries (using kernel functions) and non-separable problems (using slack variables)
Support vector machines

- A *slack variable* ξ_i reflects the extent to which a point fails to satisfy the margin

- Now the quadratic program is:

 find: $\min_w \frac{1}{2}||w||^2 + \frac{C}{m} \sum_i \xi_i$

 such that: $y_i (x_i \cdot w) \geq 1 - \xi_i$, for all $i = 1, \ldots, m$

- The dual problem is:

 find: $\max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$

 such that: $0 \leq \alpha_i \leq \frac{C}{m}$ and $\sum_i \alpha_i y_i = 0$

- The constant C reflects the trade-off between our conflicting goals:
 to maximize the margin and to minimize the margin error

Support vector machines

- Soft margin SVMs will find a solution even for non-separable problems

- The support vectors (for which $\alpha_i \neq 0$) are either on the margin, with $\alpha_i < \frac{C}{m}$ and $\xi_i = 0$, or they are training errors, with $\alpha_i = \frac{C}{m}$ and $\xi_i > 0$

- There’s no obvious way to set the constant C, other than cross-validation, etc. (but: ν-SVMs)

- demo, demo, demo

Support vector machines

- The hype about SVMs claimed that the combination of the kernel trick with capacity control makes them transcend the curse of dimensionality

- Not so: SVMs will overtrain given the right circumstances

- Choice of kernel function is crucial, and a bit of an art

<table>
<thead>
<tr>
<th>Method</th>
<th>Error (4+0 feats)</th>
<th>Error (4+6 feats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (linear)</td>
<td>0.450</td>
<td>0.472</td>
</tr>
<tr>
<td>SVM (poly 2)</td>
<td>0.078</td>
<td>0.152</td>
</tr>
<tr>
<td>SVM (poly 5)</td>
<td>0.180</td>
<td>0.370</td>
</tr>
<tr>
<td>SVM (poly 10)</td>
<td>0.230</td>
<td>0.434</td>
</tr>
<tr>
<td>BRUTO</td>
<td>0.084</td>
<td>0.090</td>
</tr>
<tr>
<td>MARS</td>
<td>0.156</td>
<td>0.173</td>
</tr>
<tr>
<td>Bayes optimal</td>
<td>0.029</td>
<td>0.029</td>
</tr>
</tbody>
</table>