Homework

- Project: CoNLL 2004 shared task

- Homework for next week from today:
 - Write a program which calculates the probability of each verb sense from the training data
 - Don’t rely on the verb sense tags, though you can use them for debugging
 - Turn in program, plus sense probabilities for exchange and feel

- Item read chapter 1 of Learning with kernels at http://www.learning-with-kernels.org/
Rosenblatt’s perceptron algorithm constructs a linear decision boundary (*separating hyperplane*).

For each misclassified training example, update weights (primal form):

\[w \leftarrow w + \eta (y_i - \hat{y}_i) x_i \]

This is a form of gradient descent to minimize the negative margin of misclassified points:

\[\hat{w} = \arg\min_w - \sum_{i \in M} y_i (x_i \cdot w) \]
The functional margin γ:

$$\gamma = \min_i y_i(x_i \cdot w)$$

is non-negative if the data is separated by the hyperplane w, and the larger γ is, the greater the separation.

Novikoff (1962): Suppose some weight vector w_0 (where $||w|| = 1$) correctly classifies all examples in the training set with margin γ, and $R = \max_i ||x_i||$. Then the number of corrections made by the perceptron algorithm is at most:

$$\left(\frac{2R}{\gamma}\right)^2$$

The difficulty of learning a concept depends on the pattern length divided by the margin.
The perceptron algorithm suffers from a few serious problems:

- If the training data is not separable (i.e., $\gamma < 0$), it will not converge to a solution.
- If the margin γ is very small, convergence will be very slow.
- When the margin is large, the solution is not unique and will depend on the starting conditions.
- The first two problems can be addressed by increasing the dimensionality of the feature space to improve separation.
Feature spaces

- For example, we could expand a two dimensional input space to a six-dimensional polynomial feature space:

\[\Phi : (x_1, x_2) \rightarrow (x_1, x_2, x_1 x_2, x_2 x_1, x_1^2, x_2^2) \]

- A separating hyperplane in this feature space corresponds to a 2nd degree polynomial decision boundary in the input space.

- By using the perceptron algorithm in this derived feature space, we can find a non-linear boundary in the input space.

- While increasing the dimensionality generally improves separation, it can also introduce it’s own problems.
Feature spaces
Feature space
Feature spaces

- One drawback to this is computational: our feature vectors and weight will get very long in a hurry.

- A solution is to use the *dual form* of the perceptron algorithm, which represents the decision boundary by the embedding strength of the training examples:

 \[w = \sum_{i} \alpha_i y_i x_i \]

 and the decision boundary is:

 \[\hat{y} = \text{sign}\left(\sum \alpha_i y_i (x_i \cdot x)\right) \]
Kernel functions

- Now the training data only enters into our calculations via dot products \((x_i \cdot x_j)\)

- For certain feature spaces, the dot product can be computed efficiently without actually constructing the complete feature vectors

- And, it turns out that a broad class of kernel functions \(K(x_i, x_j)\) are dot products in some (possibly \(\infty\)-dimensional) feature space

- Representing kernel Hilbert spaces (RKHS)

- The dual form of the perceptron algorithm can use any of these kernel functions in place of the dot product:

\[
\hat{y} = \text{sign}\left(\sum \alpha_i y_i K(x_i, x)\right)
\]
Kernel functions

- Linear kernel
 \[K(x_i, x_j) = (x_i \cdot x_j) \]
- Polynomial kernel
 \[K(x_i, x_j) = (x_i \cdot x_j)^d \]
- Radial basis function (RBF) kernel
 \[K(x_i, x_j) = \exp \left(\frac{-|x_i - x_j|^2}{\sigma^2} \right) \]
- Kernels are a kind of similarity measure
Kernel functions

- Other kernel functions are used occasionally, but these are the most important.

- Linear kernels are very useful when feature vectors are sparse (e.g., texts represented as a bag of words).

- Polynomial kernels fit curves.

- RBFs are Gaussian blobs centered on training examples (k nearest neighbors?)

- Using a kernel function, the inputs need not even be in a vector space (string kernels, tree kernels).

- ‘Kernelizing’ the perceptron can improve performance on inseparable or poorly separated training data, with the risk of overtraining.
Perceptron

- We still don’t have a unique solution from the perceptron algorithm for eparable problems
- We can fix this by imposing a stronger constraint
- Rather than minimizing the negative margin of misclassified points:

\[\hat{w} = \arg \min_w \sum_{i \in M} y_i (x_i \cdot w) \]

we can instead maximize the functional margin:

\[\gamma = \min_i y_i (x_i \cdot w) \]

- Recall how increasing the margin improved things with boosting
A problem: many weight vectors represent the same hyperplane, so we can rescale the weights (and increase the functional margin) without changing the classification decisions.

We define the geometric margin:

\[\rho = \frac{\gamma}{||w||} \]

and we say that a separating hyperplane \(w \) is canonical if the functional margin \(\gamma = 1 \).

For a canonical hyperplane, the distance to the closest data point is \(1/||w|| \).
We’ve already seen plenty of evidence that large margins are good.

Here’s a theoretical bound on the generalization error of a separating hyperplane.

Suppose \(||w|| \leq \Lambda \) and \(||x|| \leq R \) for \(\Lambda, R > 0 \), and the margin error \(\nu \) is the fraction of the \(m \) training examples with margin smaller than \(\frac{\rho}{||w||} \) for \(\rho > 0 \). Then, with probability at least \(1 - \delta \), the probability of misclassifying a test example is bounded by:

\[
\nu + \sqrt{\frac{c}{m}} \left(\frac{R^2 \Lambda^2}{\rho^2} (\log m)^2 + \log \frac{1}{\delta} \right)
\]
Optimal margin classifier

- Some observations about this:

\[\nu + \sqrt{\frac{c}{m}} \left(\frac{R^2 \Lambda^2}{\rho^2} (\log m)^2 + \log \frac{1}{\delta} \right) \]

- The error is the sum of the margin error \(\nu \) (i.e., training error) and a capacity term (\(\sqrt{\cdots} \))

- As \(m \) gets large, the capacity term gets small

- The capacity term gets larger as \(\Lambda \) and \(R \) (which are more or less fixed by the training data) increase

- Increasing the margin \(\rho \) will decrease the capacity term, but increase the margin error
Optimal margin classifier

• This bound suggests we want to find a separating hyperplane that maximizes the margin ρ without increasing the margin error ν

• For a canonical hyperplane, $\gamma = 1$ and:

$$\rho = \frac{1}{||w||}$$

Thus maximizing ρ is the same as minimizing $||w||$

• In other words, we want to find a canonical hyperplane where $||w||$ is small and no training points have margin less than $1/||w||$

• In other other words, we want no points where $y(w \cdot x) < 1$
Optimal margin classifier

- We can frame this a *quadratic programming* problem:

 find: \[\min_w \frac{1}{2}||w||^2 \]

 such that: \[y_i (x_i \cdot w) \geq 1, \text{ for all } i = 1, \ldots, m \]

- To solve this, we introduce the Lagrangian:

 \[L(w, \alpha) = \frac{1}{2}||w||^2 - \sum_i \alpha_i (y_i (x_i \cdot w) - 1) \]

 where \(\alpha_i \geq 0 \)

- We minimize \(L \) with respect to \(w \) by setting the derivatives to zero, which gives us:

 \[w = \sum_i \alpha_i y_i x_i \]
Optimal margin classifier

• With some substitutions and tinkering, we get the dual problem:

$$\text{find: } \max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$$

such that: $$\alpha_i \geq 0$$

• This can be solved using standard convex optimization techniques

• Because this is stated in terms of the dual parameters $$\alpha_i$$, it is easily kernelized
The decision boundary is given by:

\[\hat{y} = \text{sign} \left(\sum \alpha_i y_i (x_i \cdot x) \right) \]

At the solution, \(\alpha_i (y_i (x_i \cdot w) - 1) = 0 \) for all \(i \)

So, if \(\alpha_i > 0 \), then \(y_i (x_i \cdot w) = 1 \) and \(x_i \) is right on the margin

If \(y_i (x_i \cdot w) > 1 \) and \(x_i \) is not on the margin, then \(\alpha_i = 0 \)

Thus, the decision boundary is a linear combination of training points which lie precisely on the margin (support vectors). The other training points are irrelevant.
Support vector machines

- By directly controlling capacity, optimal margin classifiers reduce the dangers of overtraining.
- Because most training points don’t lie right on the margin, the dual solution will tend to be sparse.
- Optimal margin classifiers improve on the perceptron, but still fail for non-separable problems.
- Support Vector Machines (SVM) extend optimal margin classifiers to non-linear decision boundaries (using kernel functions) and non-separable problems (using slack variables).
Support vector machines

- A slack variable ξ_i reflects the extent to which a point fails to satisfy the margin.

- Now the quadratic program is:

 find: $\min_w \frac{1}{2}||w||^2 + \frac{C}{m} \sum_i \xi_i$

 such that: $y_i (x_i \cdot w) \geq 1 - \xi_i$, for all $i = 1, \ldots, m$

- The dual problem is:

 find: $\max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$

 such that: $0 \leq \alpha_i \leq \frac{C}{m}$ and $\sum_i \alpha_i y_i = 0$

- The constant C reflects the trade-off between our conflicting goals: to maximize the margin and to minimize the margin error.
Support vector machines

- Soft margin SVMs will find a solution even for non-separable problems

- The support vectors (for which $\alpha_i \neq 0$) are either on the margin, with $\alpha_i < \frac{C}{m}$ and $\xi_i = 0$, or they are training errors, with $\alpha_i = \frac{C}{m}$ and $\xi_i > 0$

- There’s no obvious way to set the constant C, other than cross-validation, etc. (but: ν-SVMs)

- demo, demo, demo
Support vector machines

- The hype about SVMs claimed that the combination of the kernel trick with capacity control makes them transcend the curse of dimensionality.

- Not so: SVMs will overtrain given the right circumstances.

- Choice of kernel function is crucial, and a bit of an art.

<table>
<thead>
<tr>
<th>Method</th>
<th>Error (4+0 feats)</th>
<th>Error (4+6 feats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (linear)</td>
<td>0.450</td>
<td>0.472</td>
</tr>
<tr>
<td>SVM (poly 2)</td>
<td>0.078</td>
<td>0.152</td>
</tr>
<tr>
<td>SVM (poly 5)</td>
<td>0.180</td>
<td>0.370</td>
</tr>
<tr>
<td>SVM (poly 10)</td>
<td>0.230</td>
<td>0.434</td>
</tr>
<tr>
<td>BRUTO</td>
<td>0.084</td>
<td>0.090</td>
</tr>
<tr>
<td>MARS</td>
<td>0.156</td>
<td>0.173</td>
</tr>
<tr>
<td>Bayes optimal</td>
<td>0.029</td>
<td>0.029</td>
</tr>
</tbody>
</table>