Homework

- WSD results on development set:

 always assign 01 88.40%
 most frequent sense 92.61%
 most frequent possible sense 92.73%

bullab% paste out props.dev | distr feel
{’01’: 11}
bullab% paste senses.dev props.dev | distr feel
{’02’: 3, ’XX’: 1, ’01’: 7}

Support Vector Machines

- Empirical Risk Minimization finds a function $f \in \mathcal{F}$ which minimizes the training error

- Structural Risk Minimization finds a function $f \in \mathcal{F}$ which minimizes a bound on the generalization error (which depends on the training error and model capacity)

- For a separating hyperplane, increasing the margin decreases the capacity

- This, plus SRM, yields the optimal margin classifier (Vapnik 1982): find the canonical hyperplane which separates the training data and maximizes the margin

Next steps for project

- Cascade approach
 - find argument boundaries
 - label arguments with roles

- Presentations in two weeks

[A1 A&W Brands] [V lost] [A2 14] to [A4 27].
Support Vector Machines

- Finding the optimal separating hyperplane is a quadratic programming problem (optimizing a quadratic function with linear constraints on the variables)

- Similar problems come up in operations research and finance, and methods for solving quadratic programs are well established

- In case the training data is not separable (or even if it is), we can use a soft margin algorithm which allows a certain amount of ‘slack’

- This is a big improvement over the perceptron, but is still limited to linear decision boundaries

- This optimization problem can be stated in either a primal form (in terms of the decision boundary) or a dual form (in terms of the training examples)

- The dual form has several advantages:
 * it’s easier to solve than the primal form
 * only the training examples right on the margin or inside it (the support vectors) are needed to represent the boundary
 * the dot product can be replaced by an arbitrary kernel function, allowing certain kinds of non-linearities to be captured

- From this, we get Support Vector Machines, a leading contender for best all-around learning algorithm

Support Vector Machines

- SVMs are much harder to understand and to implement than other learning methods

- But, the ‘leading ideas’ aren’t so bad, and there are a number of high quality implementations around for us to use

- Besides the obvious, work on SVMs has had two significant contributions to machine learning in general:
 * validated results of statistical learning theory (especially SRM)
 * showed the benefit of using simple learners + kernel functions to learn complex concepts

- demo, demo, demo

Loss functions

- What are SVMs really doing?

- Recall that boosting turned out to be an algorithm to minimize the exponential loss

- This is similar to maximum entropy methods, which minimize the negative logistic log-likelihood

- SVMs can also be fit into the same framework. They find the solution to:

\[
\min_\beta \sum_i [1 - y_i f(x_i; \beta)]_+ + \lambda \|\beta\|^2
\]

- This is the hinge loss \([1 - y_i f(x_i; \beta)]_+\) plus a quadratic penalty or regularization term
Support vector machines

Loss functions

- The hinge loss is an upper bound on the zero-one loss, a natural for classification, and the logistic log-likelihood of MaxEnt models is very similar.

- This gives us another perspective on Gaussian prior smoothing.

- This also gives a unified framework for linking SVMs, MaxEnt, boosting, and many other types of models:

\[
\min_{\beta} L(y, f) + \lambda J(\beta)
\]

- New methods can be developed by tinkering with the loss and penalty functions.

Implementation

- While we know how to solve quadratic programs in general, SVMs are particularly challenging.

- Many generic QP codes need the entire \(n \times n \) Gram matrix.

- Others return extremely small values instead of zeros \((10^{-17} \approx 0)\).

- Most training points are irrelevant, so we can use active set methods.

- Memoization can speed up calculation of \(K(x_i, x_j) \).

- Chunking starts with a small training set, and gradually adds items that get misclassified.

Implementation

- Joachims' (1997) \textit{SVMlight} decomposes the problem into smaller, simpler problems, and eliminates examples which are unlikely to be support vectors early on.

- Platt's (1998) Sequential Minimal Optimization (SMO) decomposes the problem into subproblems that are small enough to solve analytically.

- Large scale problems can be approached by constructing a low-rank approximation to the Gram matrix.

- Computational cost is still a problem, but becoming less and less so for medium-sized problems (10,000 training examples/100 features).
Kernel functions

- Much of the power of SVMs derives from the kernel trick
- Designing an appropriate kernel can make a huge difference (there’s No Free Lunch!)
- Linear, polynomial, and RBF kernels are a good place to start
- If K_1 and K_2 are kernels, and $\alpha_1, \alpha_2 \geq 0$, then:
 \[
 K(x_i, x_j) = \alpha_1 K_1(x_i, x_j) + \alpha_2 K_2(x_i, x_j)
 \]
 \[
 K(x_i, x_j) = K_1(x_i, x_j) K_2(x_i, x_j)
 \]
 are also kernels

String kernels

- Linear kernels can be computed efficiently for sparse bag-of-words models
- If $f(w, x)$ is the frequency of for w in document x, then computing the dot product:
 \[
 K(x_i, x_j) = \sum_w f(w, x_i) f(w, x_j)
 \]
 has cost that depends on the length of the documents, not the size of the vocabulary
- But, why use a bag of words?
 - efficiency
 - independence

String kernels

- The bag of words model misses out on a lot
- It depends on having a complete language/domain dependent vocabulary
- It can’t represent a partial match between related (but not identical words)
- It completely ignores multi-word units and syntactic relations
- Really, its only strength is that it's easy to use

String kernels

- A linear kernel is comparable to a mapping like:

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>t</th>
<th>r</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ(cat)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ϕ(car)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ϕ(bat)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ϕ(bar)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Similarity between words depends only on the number of letters they have in common, not their order or proximity
String kernels

- An alternative would represent a word as a set of possibly discontinuous n-grams.

- The trigram **c-r-d** characterizes the words *card* and *custard*, but the former more than the latter.

- We use a decay factor $\lambda (0 < \lambda < 1)$, so that if a match that spans n characters, it gets a weight of λ^n.

- Using bigrams, this mapping would give us:

<table>
<thead>
<tr>
<th></th>
<th>c-a</th>
<th>c-t</th>
<th>a-t</th>
<th>b-a</th>
<th>b-t</th>
<th>c-r</th>
<th>a-r</th>
<th>b-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ(cat)</td>
<td>λ^2</td>
<td>λ^3</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ϕ(car)</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>λ^3</td>
<td>λ^2</td>
<td>0</td>
</tr>
<tr>
<td>ϕ(bat)</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>λ^2</td>
<td>λ^3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ϕ(bar)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>λ^3</td>
</tr>
</tbody>
</table>

String kernels

- The value of the kernel function is the dot product of the feature vectors:

$$K(\text{car}, \text{cat}) = \phi(\text{car}) \cdot \phi(\text{cat})$$

$$= \langle \lambda^2, \lambda^3, \lambda^2, 0, 0, 0, 0, 0 \rangle \cdot \langle \lambda^2, 0, 0, 0, \lambda^3, \lambda^2, 0 \rangle$$

$$= \lambda^4$$

- The normalized distance between the words is:

$$\tilde{K}(\text{car}, \text{cat}) = \frac{K(\text{car}, \text{cat})}{\sqrt{K(\text{car}, \text{car}) K(\text{cat}, \text{cat})}}$$

$$= \frac{\lambda^4}{2 \lambda^4 + \lambda^6}$$

$$= \frac{1}{2 + \lambda^2}$$

String kernels

- This *string subsequence kernel* (SSK) can be extended to entire documents.

- For interesting subsequence sizes and document lengths, explicit computation of all of the features would be impractical.

- A very similar problem arises in bioinformatics: comparing DNA sequences.

- We can use dynamic programming to efficiently evaluate the kernel function without constructing the feature vectors.

- The can also be computed using *suffix trees*, a compact representation of the substrings in a text.

- Let Σ^n be the set of all strings of length n. To construct the feature mapping ϕ for a string s, we define the u coordinate for each $u \in \Sigma^n$:

$$\phi_u(s) = \sum_{i: u=s[i]} \lambda^{i(i)}$$

- The kernel function is given by:

$$K_n(s, t) = \sum_{u \in \Sigma^n} \phi_u(s) \cdot \phi_u(t)$$

$$= \sum_{u \in \Sigma^n} \sum_{1: u=s[i]} \sum_{1: u=t[j]} \lambda^{i(i)+j(j)}$$
String kernels

- Lohdi et al. (2002) compare SSK to standard word kernel (WK) and \(n \)-gram kernels (NGK) for text classification

- NGK and SSK show very similar performance overall

- Best results for \(n = 3 \) or \(n = 4 \), but higher than that reduces performance

- Increasing \(\lambda \) for SSK increases precision but decreases recall

- Summing SSKs with multiples values of \(n \) can improve things very slightly

- As the amount of training data increases, benefits of SSK are reduced