Homework

- WSD results on development set:

 always assign 01 88.40%
 most frequent sense 92.61%
 most frequent possible sense 92.73%

bulba% paste out props.dev | distr feel
{"01": 11}
bulba% paste senses.dev props.dev | distr feel
{"02": 3, 'XX': 1, '01': 7}
Homework

[A1 A&W Brands] [V lost] [A2 14] to [A4 27] .

<roleset id="lose.01" name="decrease, fall">
<roles>
 <role descr="logical subject, patient, thing falling" n="1"/>
 <role descr="EXT, amount fallen" n="2"/>
 <role descr="start point" n="3"/>
 <role descr="end point" n="4"/>
 <role descr="medium" f="LOC" n="M"/>
</roles>
</roleset>

<roleset id="lose.02" name="lose, no longer have">
<roles>
 <role descr="entity losing something" n="0"/>
 <role descr="thing lost" n="1"/>
 <role descr="benefactive, entity gaining thing lost" n="2"/>
</roles>
</roleset>
Homework

- Next steps for project
- Cascade approach
 - find argument boundaries
 - label arguments with roles
- Presentations in two weeks
Support Vector Machines

- *Empirical Risk Minimization* finds a function $f \in \mathcal{F}$ which minimizes the training error.

- *Structural Risk Minimization* finds a function $f \in \mathcal{F}$ which minimizes a bound on the generalization error (which depends on the training error and model capacity).

- For a separating hyperplane, increasing the margin decreases the capacity.

- This, plus SRM, yields the *optimal margin classifier* (Vapnik 1982): find the canonical hyperplane which separates the training data and maximizes the margin.
Support Vector Machines

- Finding the optimal separating hyperplane is a quadratic programming problem (optimizing a quadratic function with linear constraints on the variables)

- Similar problems come up in operations research and finance, and methods for solving quadratic programs are well established

- In case the training data is not separable (or even if it is), we can use a *soft margin* algorithm which allows a certain amount of ‘slack’

- This is a big improvement over the perceptron, but is still limited to linear decision boundaries
Support Vector Machines

- This optimization problem can be stated in either a *primal* form (in terms of the decision boundary) or a *dual* form (in terms of the training examples).

- The dual form has several advantages:
 - it’s easier to solve than the primal form
 - only the training examples right on the margin or inside it (the *support vectors*) are needed to represent the boundary
 - the dot product can be replaced by an arbitrary *kernel function*, allowing certain kinds of non-linearities to be captured

- From this, we get Support Vector Machines, a leading contender for best all-around learning algorithm.
Support Vector Machines

- SVMs are much harder to understand and to implement than other learning methods

- But, the ‘leading ideas’ aren’t so bad, and there are a number of high quality implementations around for us to use

- Besides the obvious, work on SVMs has had two significant contributions to machine learning in general:
 - validated results of statistical learning theory (especially SRM)
 - showed the benefit of using simple learners + kernel functions to learn complex concepts

- demo, demo, demo
• What are SVMs really doing?

• Recall that boosting turned out to be an algorithm to minimize the exponential loss

• This is similar to maximum entropy methods, which minimize the negative logistic log-likelihood

• SVMs can also be fit into the same framework. They find the solution to:

\[
\min_{\beta} \sum_i \left[1 - y_i f(x_i; \beta) \right]_+ + \lambda ||\beta||^2
\]

• This is the \textit{hinge loss} \[1 - y_i f(x_i; \beta)]_+ plus a quadratic \textit{penalty} or \textit{regularization} term
Support vector machines
Loss functions

- The hinge loss is an upper bound on the zero-one loss, a natural for classification, and the logistic log-likelihood of MaxEnt models is very similar.

- This gives us another perspective on Gaussian prior smoothing.

- This also gives a unified framework for linking SVMs, MaxEnt, boosting, and many other types of models:

 \[\min_{\beta} L(y, f) + \lambda J(\beta) \]

- New methods can be developed by tinkering with the loss and penalty functions.
Implementation

• While we know how to solve quadratic programs in general, SVMs are particularly challenging

• Many generic QP codes need the entire $n \times n$ Gram matrix

• Others return extremely small values instead of zeros ($10^{-17} \approx 0$)

• Most training points are irrelevant, so we can use active set methods

• Memoization can speed up calculation of $K(x_i, x_j)$

• Chunking starts with a small training set, and gradually adds items that get misclassified
Implementation

- Joachims’ (1997) SVM^{light} decomposes the problem into smaller, simpler problems, and eliminates examples which are unlikely to be support vectors early on.

- Platt’s (1998) Sequential Minimal Optimization (SMO) decomposes the problem into subproblems that are small enough to solve analytically.

- Large scale problems can be approached by constructing a low-rank approximation to the Gram matrix.

- Computational cost is still a problem, but becoming less and less so for medium-sized problems (10,000 training examples/100 features).
Kernel functions

- Much of the power of SVMs derives from the kernel trick

- Designing an appropriate kernel can make a huge difference (there’s No Free Lunch!)

- Linear, polynomial, and RBF kernels are a good place to start

- If K_1 and K_2 are kernels, and $\alpha_1, \alpha_2 \geq 0$, then:

\[
K(x_i, x_j) = \alpha_1 K_1(x_i, x_j) + \alpha_2 K_2(x_i, x_j)
\]

\[
K(x_i, x_j) = K_1(x_i, x_j) K_2(x_i, x_j)
\]

are also kernels
String kernels

- Linear kernels can be computed efficiently for sparse bag-of-words models.

- If \(f(w, x) \) is the frequency of word \(w \) in document \(x \), then computing the dot product:

\[
K(x_i, x_j) = \sum_w f(w, x_i) f(w, x_j)
\]

has cost that depends on the length of the documents, \textit{not} the size of the vocabulary.

- But, why use a bag of words?
 - efficiency
 - independence
String kernels

- The bag of words model misses out on a lot
- It depends on having a complete language/domain dependent vocabulary
- It can’t represent a partial match between related (but not identical words)
- It completely ignores multi-word units and syntactic relations
- Really, its only strength is that it’s easy to use
String kernels

• A linear kernel is comparable to a mapping like:

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>t</th>
<th>r</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ (cat)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ϕ (car)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ϕ (bat)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ϕ (bar)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Similarity between words depends only on the number of letters they have in common, not their order or proximity
String kernels

- An alternative would represent a word as a set of possibly discontinuous n grams

- The trigram **c-r-d** characterizes the words **card** and **custard**, but the former more than the latter

- We use a decay factor λ ($0 < \lambda < 1$), so that if a match that spans n characters, it gets a weight of λ^n

- Using bigrams, this mapping would give us:

<table>
<thead>
<tr>
<th></th>
<th>c-a</th>
<th>c-t</th>
<th>a-t</th>
<th>b-a</th>
<th>b-t</th>
<th>c-r</th>
<th>a-r</th>
<th>b-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi(\text{cat})$</td>
<td>λ^2</td>
<td>λ^3</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\phi(\text{car})$</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>λ^3</td>
<td>λ^2</td>
<td>0</td>
</tr>
<tr>
<td>$\phi(\text{bat})$</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>λ^2</td>
<td>λ^3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\phi(\text{bar})$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>λ^3</td>
</tr>
</tbody>
</table>
String kernels

- The value of the kernel function is the dot product of the feature vectors:

\[
K(\text{car}, \text{cat}) = \phi(\text{car}) \cdot \phi(\text{cat})
\]

\[
= \langle \lambda^2, \lambda^3, \lambda^2, 0, 0, 0, 0 \rangle \cdot \langle \lambda^2, 0, 0, 0, 0, \lambda^3, \lambda^2, 0 \rangle
\]

\[
= \lambda^4
\]

- The normalized distance between the words is:

\[
\hat{K}(\text{car}, \text{cat}) = \frac{K(\text{car}, \text{cat})}{\sqrt{K(\text{car}, \text{car}) K(\text{cat}, \text{cat})}}
\]

\[
= \frac{\lambda^4}{2 \lambda^4 + \lambda^6}
\]

\[
= \frac{1}{2 + \lambda^2}
\]
This *string subsequence kernel* (SSK) can be extended to entire documents.

For interesting subsequence sizes and document lengths, explicit computation of all of the features would be impractical.

A very similar problem arises in bioinformatics: comparing DNA sequences.

We can use dynamic programming to efficiently evaluate the kernel function without constructing the feature vectors.

The can also be computed using *suffix trees*, a compact representation of the substrings in a text.
String kernels

- Let Σ^n be the set of all strings of length n. To construct the feature mapping ϕ for a string s, we define the u coordinate for each $u \in \Sigma^n$:

$$\phi_u(s) = \sum_{i: u = s[i]} \lambda^l(i)$$

- The kernel function is given by:

$$K_n(s, t) = \sum_{u \in \Sigma^n} \phi_u(s) \cdot \phi_u(t)$$

$$= \sum_{u \in \Sigma^n} \sum_{i: u = s[i]} \lambda^l(i) \sum_{j: u = t[j]} \lambda^l(j)$$
Lohdi et al. (2002) compare SSK to standard word kernel (WK) and \(n \)-gram kernels (NGK) for text classification.

NGK and SSK show very similar performance overall.

Best results for \(n = 3 \) or \(n = 4 \), but higher than that reduces performance.

Increasing \(\lambda \) for SSK increases precision but decreases recall.

Summing SSKs with multiples values of \(n \) can improve things very slightly.

As the amount of training data increases, benefits of SSK are reduced.