Project

- Presentations next week:

 Hannah, Lara, (Guoyan), Lucien, (John), Rebecca

- Final project due: Wednesday, May 13 @ 5:00pm

- Turn in a *paper* explaining what you did, how well it worked, why it worked as well as it did but not better, etc., plus any *programs* you wrote

- The project grade will be based on the paper, which should look like a conference paper (~8 pages, references)
Project

- Are chunks within the same clause part of the same argument?
- Feature vector:
 - NP,NP,Britain,NNP,’s,POS,yes.
 - NP,VP,industry,NN,is,VBZ,no.
- Use Timbl for classification
- Best result so far: 81.27% accuracy
- Largest source of error is PPs
Kernel functions

- Much of the power of SVMs comes from the use of kernel functions and derived feature spaces
- Linear kernels allow efficient processing of the very large feature vectors that come with a bag of words model
- Polynomial kernels capture dependencies between features
- Special purpose kernels reflect the structure of a particular problem
- Combinations of kernels are also kernels
String kernels

• *String subsequence kernels* represent as string as a bag of (possibly discontinuous) \(n \) grams

• The feature set is very large, but dot products can be computed efficiently

• Dynamic programming and suffix trees

• For text classification SSKs give a small improvement over \(n \)-gram kernels for small training sets
Tree kernels

- We can use similar tricks to compare trees by comparing common subtrees

- Given trees T_1 and T_2, with nodes N_1 and N_2, define:

$$I_i(n) = \begin{cases}
1 & \text{if subtree } i \text{ is rooted at } n \\
0 & \text{otherwise}
\end{cases}$$

- The kernel function is:

$$K(T_1, T_2) = h(T_1) \cdot h(T_2)$$

where

$$h_i(T_1) = \sum_{n_1 \in N_1} I_i(n_1)$$

or the number of times subtree i occurs in tree T_1.
Tree kernels

- The feature vector $h(T_1)$ will have as many dimensions as there are possible subtrees (which will be astronomical)

- But, the dot product $h(T_1) \cdot h(T_2)$ can only depend on dimensions for subtrees which occur in both T_1 and T_2

- Let $C(n_1, n_2)$ be the number of common subtrees rooted at n_1 and n_2

- The kernel function is:

$$K(T_1, T_2) = h(T_1) \cdot h(T_2)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \sum_i I_i(n_1) I_i(n_2)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} C(n_1, n_2)$$
Tree kernels

- We can compute efficiently compute $C(n_1, n_2)$ by recursion

- If the rules applied at n_1 and n_2 are different, then there are no common subtrees and $C(n_1, n_2) = 0$

- If the rules are the same and n_1 and n_2 are preterminals, then $C(n_1, n_2) = 1$

- Otherwise:

 $$C(n_1, n_2) = \prod_{i=1}^{nc(n_1)} (1 + C(ch(n_1, i), ch(n_2, i)))$$

- Worst case, K can be computed in $O(|N_1| |N_2|)$ time, but in practice $C(n_1, n_2) = 0$ for most n_1, n_2 and the computation is much cheaper
Tree kernels

- The number of common subtrees depends on the total number of subtrees.

- To correct for this we can normalize this (or any) kernel:

\[
\hat{K}(x_i, x_j) = \frac{K(x_i, x_j)}{\sqrt{K(x_i, x_i) K(x_j, x_j)}}
\]

- Like the string kernel, we can add a decay term \(\lambda \) to give larger subtrees less weight:

\[
C(n_1, n_2) = \prod_{i=1}^{nc(n_1)} (1 + \lambda C(ch(n_1, i), ch(n_2, i)))
\]
Tree kernels

- Some parsing results (Collins and Duffy 2002):

<table>
<thead>
<tr>
<th></th>
<th>≤40 Words (2245 sentences)</th>
<th>≤100 Words (2416 sentences)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR</td>
<td>LP</td>
</tr>
<tr>
<td>CO99</td>
<td>88.5%</td>
<td>88.7%</td>
</tr>
<tr>
<td>VP</td>
<td>89.1%</td>
<td>89.4%</td>
</tr>
</tbody>
</table>

- And named entity recognition:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxEnt</td>
<td>84.4%</td>
<td>86.3%</td>
<td>85.3%</td>
</tr>
<tr>
<td>VP</td>
<td>86.1%</td>
<td>89.1%</td>
<td>87.6%</td>
</tr>
</tbody>
</table>
Kernel functions

- Implementation available at http://www.isi.edu/~hdaume/SVMsequel/

- Similar kernels have been proposed for dependency structures, tag sequences, etc.

- A general divide and conquer strategy for designing kernels

- *Locality-improved kernels* have been used in image processing and bioinformatics

- Specific domain knowledge may also be built into the kernel function (*codon-improved kernels* in bioinformatics)

- The benefits of kernel methods have only begun to be explored in linguistics
Support vector machines

- Support Vector Machines come from separating hyperplanes + margin error bound + kernel functions + optimization
- The math is daunting, but there are a number of SVM libraries that are reasonably efficient and easy to use
- Many, many model variants and training methods
- Generally give very high performance (as in accuracy), but don’t scale to large training sets well
- Designing appropriate kernel function for linguistic problems
Floating point arithmetic

- Digital computers can’t represent real numbers:

```bash
bulba% python
Python 2.2.1 (#1, Aug 30 2002, 12:15:30)
[GCC 3.2 20020822 (Red Hat Linux Rawhide 3.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 3.3
3.2999999999999998

>>> 

- Financial calculations use integers

- Scientific calculations use approximations, which vary in their accuracy

- Standard for floating point calculations: IEEE 754
Floating point arithmetic

- Floating point numbers are stored as a *mantissa* and an *exponent*

- IEEE floating point formats:

<table>
<thead>
<tr>
<th>precision</th>
<th>min</th>
<th>max</th>
<th>eps</th>
<th>digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>$1.2 \times 10^{-38}$</td>
<td>$3.4 \times 10^{38}$</td>
<td>$1.2 \times 10^{-7}$</td>
<td>7</td>
</tr>
<tr>
<td>double</td>
<td>$2.2 \times 10^{-308}$</td>
<td>$1.8 \times 10^{308}$</td>
<td>$2.2 \times 10^{-16}$</td>
<td>16</td>
</tr>
</tbody>
</table>

- Just because you can represent $10^{300}$ doesn’t mean you get 300 significant digits!

- Default in python and perl is double precision

- Don’t use single precision (*float*) unless you have a good reason
Floating point arithmetic

- It’s easy to lose precision:

\[ 1000.2 - 1000.0 = 0.200012 \]

- Things to watch out for:
  - subtractions of numbers that are nearly equal,
  - additions of numbers whose magnitudes are nearly equal, but whose signs are opposite
  - additions and subtractions of numbers that differ greatly in magnitude

- Exact comparisons between floating point numbers can be misleading

- The same operations performed in a different order or on different hardware may give different results
A look back

- We’ve come a long way, from flipping coins to Support Vector Machines

- Non-parametric methods:
  - decision trees
  - instance-based learning
  - transformation-based learning
  - perceptron
  - support vector machines

- Parametric methods:
  - naive Bayes
  - maximum entropy
A look back

- One theme that runs through machine learning research is the way we characterize *generalization*.

- curse of dimensionality

- bias vs. variance

- overtraining

- simplicity

- capacity
A look ahead

- Some current directions in machine learning for NLP:
  - getting at ‘deep’ structures
  - task-specific representations (remember, there’s no free lunch!)
  - scaling methods to deal with huge datasets

- Data mining uses machine learning to find patterns in unstructured data collections...

- ... which we’ll be looking at in more detail in the fall